Source code for hermespy.channel.cdl.urban_microcells

# -*- coding: utf-8 -*-

from __future__ import annotations
from math import log10
from typing import Mapping, Set, Tuple, Type

from h5py import Group
import numpy as np

from hermespy.core.factory import Serializable
from .cluster_delay_lines import (
    ClusterDelayLineRealization,
    ClusterDelayLineBase,
    ClusterDelayLineRealizationParameters,
    ClusterDelayLineSample,
    ClusterDelayLineSampleParameters,
    O2IState,
)
from ..channel import ChannelSampleHook
from ..consistent import ConsistentGenerator, ConsistentRealization

__author__ = "Jan Adler"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Jan Adler"]
__license__ = "AGPLv3"
__version__ = "1.3.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"


[docs] class UrbanMicrocellsRealization(ClusterDelayLineRealization[O2IState]): """Realization of an urban street canyon cluster delay line model.""" def __init__( self, expected_state: O2IState | None, state_realization: ConsistentRealization, los_realization: ConsistentRealization, nlos_realization: ConsistentRealization, o2i_realization: ConsistentRealization, parameters: ClusterDelayLineRealizationParameters, sample_hooks: Set[ChannelSampleHook[ClusterDelayLineSample]], gain: float = 1.0, ) -> None: """ Args: expected_state (O2IState | None): Expected large-scale state of the channel. If not specified, the large-scale state is randomly generated. state_realization (ConsistentRealization): Realization of a spatially consistent random number generator for the large-scale state. los_realization (ConsistentRealization): Realization of a spatially consistent random number generator for small-scale parameters in the LOS state. nlos_realization (ConsistentRealization): Realization of a spatially consistent random number generator for small-scale parameters in the NLOS state. o2i_realization (ConsistentRealization): Realization of a spatially consistent random number generator for small-scale parameters in the O2I state. parameters (ClusterDelayLineRealizationParameters): General parameters of the cluster delay line realization. sample_hooks (Set[ChannelSampleHook[ClusterDelayLineSample]]): Hooks to be called when a channel sample is generated. gain (float, optional): Linear amplitude scaling factor if signals propagated over the channel. """ # Initialize base class ClusterDelayLineRealization.__init__( self, expected_state, state_realization, parameters, sample_hooks, gain ) # Initialize class attributes self.__los_realization = los_realization self.__nlos_realization = nlos_realization self.__o2i_realization = o2i_realization # Table 7.4.4-1 in TR 138.901 v17.0.0 @staticmethod def _pathloss_dB( state: O2IState, parameters: ClusterDelayLineSampleParameters ) -> float: # pragma: no cover if state == O2IState.O2I: return 0.0 h_BS = 10.0 # Height of the base station in meters h_UT = max(1.5, min(22.5, parameters.terminal_height)) # Height of the terminal in meters # Note 1 in Table 7.4.4-1 of TR 138.901 v17.0.0 breakpoint_distance = ( 4 * (h_BS - 1) * (h_UT - 1) * parameters.carrier_frequency * 1e-8 / 3.0 ) if parameters.distance_2d < breakpoint_distance: PL_LOS = ( 32.4 + 21 * log10(parameters.distance_3d) + 20 * log10(parameters.carrier_frequency * 1e-9) ) else: PL_LOS = ( 32.4 + 40 * log10(parameters.distance_3d) + 20 * log10(parameters.carrier_frequency * 1e-9) - 9.5 * log10(breakpoint_distance**2 + (h_BS - h_UT) ** 2) ) if state == O2IState.LOS: return PL_LOS PL_NLOS = ( 35.3 * log10(parameters.distance_3d) + 22.4 + 21.3 * log10(parameters.carrier_frequency * 1e-9) - 0.3 * (h_UT - 1.5) ) return max(PL_LOS, PL_NLOS) def _small_scale_realization(self, state: O2IState) -> ConsistentRealization: if state == O2IState.LOS: return self.__los_realization elif state == O2IState.NLOS: return self.__nlos_realization else: return self.__o2i_realization def _sample_large_scale_state( self, state_variable_sample: float, parameters: ClusterDelayLineSampleParameters ) -> O2IState: los_probability = 18 / parameters.distance_3d + np.exp(-parameters.distance_3d / 36.0) * ( 1 - 18 / parameters.distance_3d ) return O2IState.LOS if state_variable_sample < los_probability else O2IState.NLOS @staticmethod def __parameter_dependency(carrier_frequency: float, factor: float, summand: float) -> float: """An implementation of the frequently used equation .. math:: y = a \\log_{10}(1 + f_c) + b Args: carrier_frequency (float): Carrier frequency factor (float): Factor scaling the logarithmic frequency dependency. summand (float): Added constant. Returns: The result. """ fc = ( max(2e9, carrier_frequency) * 1e-9 ) # Frequency is lower-bounded by 2 GHz, according to Note 7 in table 7.5-6 of TR 138.901 v17.0.0 return factor * log10(1 + fc) + summand # Parameters for computing the mean delay spread # TR 138.901 v17.0.0 Table 7.5-6 __delay_spread_mean: Mapping[O2IState, Tuple[float, float]] = { O2IState.LOS: (-0.24, -7.14), O2IState.NLOS: (-0.24, -6.83), O2IState.O2I: (0.0, -6.62), } @staticmethod def _delay_spread_mean(state: O2IState, carrier_frequency: float) -> float: mean_parameters = UrbanMicrocellsRealization.__delay_spread_mean[state] return UrbanMicrocellsRealization.__parameter_dependency( carrier_frequency, *mean_parameters ) # Parameters for computing the standard deviation of the delay spread # TR 138.901 v17.0.0 Table 7.5-6 __delay_spread_std: Mapping[O2IState, Tuple[float, float]] = { O2IState.LOS: (0.0, 0.38), O2IState.NLOS: (0.16, 0.28), O2IState.O2I: (0.0, 0.32), } @staticmethod def _delay_spread_std(state: O2IState, carrier_frequency: float) -> float: std_parameters = UrbanMicrocellsRealization.__delay_spread_std[state] return UrbanMicrocellsRealization.__parameter_dependency(carrier_frequency, *std_parameters) # Parameters for computing the mean angle of departure spread # TR 138.901 v17.0.0 Table 7.5-6 __aod_spread_mean: Mapping[O2IState, Tuple[float, float]] = { O2IState.LOS: (-0.05, 1.21), O2IState.NLOS: (-0.23, 1.53), O2IState.O2I: (0.0, 1.25), } @staticmethod def _aod_spread_mean(state: O2IState, carrier_frequency: float) -> float: mean_parameters = UrbanMicrocellsRealization.__aod_spread_mean[state] return UrbanMicrocellsRealization.__parameter_dependency( carrier_frequency, *mean_parameters ) # Parameters for computing the standard deviation of the angle of departure spread # TR 138.901 v17.0.0 Table 7.5-6 __aod_spread_std: Mapping[O2IState, Tuple[float, float]] = { O2IState.LOS: (0.0, 0.41), O2IState.NLOS: (0.11, 0.33), O2IState.O2I: (0.0, 0.42), } @staticmethod def _aod_spread_std(state: O2IState, carrier_frequency: float) -> float: std_parameters = UrbanMicrocellsRealization.__aod_spread_std[state] return UrbanMicrocellsRealization.__parameter_dependency(carrier_frequency, *std_parameters) # Parameters for computing the mean angle of arrival spread # TR 138.901 v17.0.0 Table 7.5-6 __aoa_spread_mean: Mapping[O2IState, Tuple[float, float]] = { O2IState.LOS: (-0.08, 1.73), O2IState.NLOS: (-0.08, 1.81), O2IState.O2I: (0.0, 1.76), } @staticmethod def _aoa_spread_mean(state: O2IState, carrier_frequency: float) -> float: mean_parameters = UrbanMicrocellsRealization.__aoa_spread_mean[state] return UrbanMicrocellsRealization.__parameter_dependency( carrier_frequency, *mean_parameters ) # Parameters for computing the standard deviation of the angle of arrival spread # TR 138.901 v17.0.0 Table 7.5-6 __aoa_spread_std: Mapping[O2IState, Tuple[float, float]] = { O2IState.LOS: (0.014, 0.28), O2IState.NLOS: (0.05, 0.3), O2IState.O2I: (0.0, 0.16), } @staticmethod def _aoa_spread_std(state: O2IState, carrier_frequency: float) -> float: std_parameters = UrbanMicrocellsRealization.__aoa_spread_std[state] return UrbanMicrocellsRealization.__parameter_dependency(carrier_frequency, *std_parameters) # Parameters for computing the mean zenith of arrival spread # TR 138.901 v17.0.0 Table 7.5-6 __zoa_spread_mean: Mapping[O2IState, Tuple[float, float]] = { O2IState.LOS: (-0.1, 0.73), O2IState.NLOS: (-0.04, 0.92), O2IState.O2I: (0.0, 1.01), } @staticmethod def _zoa_spread_mean(state: O2IState, carrier_frequency: float) -> float: mean_parameters = UrbanMicrocellsRealization.__zoa_spread_mean[state] return UrbanMicrocellsRealization.__parameter_dependency( carrier_frequency, *mean_parameters ) # Parameters for computing the standard deviation of the zenith of arrival spread # TR 138.901 v17.0.0 Table 7.5-6 __zoa_spread_std: Mapping[O2IState, Tuple[float, float]] = { O2IState.LOS: (-0.04, 0.34), O2IState.NLOS: (-0.07, 0.41), O2IState.O2I: (0.0, 0.43), } @staticmethod def _zoa_spread_std(state: O2IState, carrier_frequency: float) -> float: std_parameters = UrbanMicrocellsRealization.__zoa_spread_std[state] return UrbanMicrocellsRealization.__parameter_dependency(carrier_frequency, *std_parameters) @staticmethod def _rice_factor_mean() -> float: return 9.0 @staticmethod def _rice_factor_std() -> float: return 5.0 # Delay scaling factors for different LOS states # TR 138.901 v17.0.0 Table 7.5-6 __delay_scaling: Mapping[O2IState, float] = { O2IState.LOS: 3.0, O2IState.NLOS: 2.1, O2IState.O2I: 2.2, } @staticmethod def _delay_scaling(state: O2IState) -> float: return UrbanMicrocellsRealization.__delay_scaling[state] # Mean cross-polarization power ratio for different LOS states # TR 138.901 v17.0.0 Table 7.5-6 __cross_polarization_power_mean: Mapping[O2IState, float] = { O2IState.LOS: 9.0, O2IState.NLOS: 8.0, O2IState.O2I: 9.0, } @staticmethod def _cross_polarization_power_mean(state: O2IState) -> float: return UrbanMicrocellsRealization.__cross_polarization_power_mean[state] # Standard deviation of the cross-polarization power ratio for different LOS states # TR 138.901 v17.0.0 Table 7.5-6 __cross_polarization_power_std: Mapping[O2IState, float] = { O2IState.LOS: 3.0, O2IState.NLOS: 3.0, O2IState.O2I: 5.0, } @staticmethod def _cross_polarization_power_std(state: O2IState) -> float: return UrbanMicrocellsRealization.__cross_polarization_power_std[state] # Number of clusters for different LOS states # TR 138.901 v17.0.0 Table 7.5-6 __num_clusters: Mapping[O2IState, int] = {O2IState.LOS: 12, O2IState.NLOS: 19, O2IState.O2I: 12} @staticmethod def _num_clusters(state: O2IState) -> int: return UrbanMicrocellsRealization.__num_clusters[state] # RMS cluster delay spread for different LOS states # TR 138.901 v17.0.0 Table 7.5-6 # pragma: no cover __cluster_delay_spread: Mapping[O2IState, float] = { O2IState.LOS: 5.0 * 1e-9, O2IState.NLOS: 11.0 * 1e-9, O2IState.O2I: 11.0 * 1e-9, } @staticmethod def _cluster_delay_spread(state: O2IState, carrier_frequency: float) -> float: return UrbanMicrocellsRealization.__cluster_delay_spread[state] # pragma: no cover # RMS cluster azimuth of departure spread for different LOS states in degrees # TR 138.901 v17.0.0 Table 7.5-6 __cluster_aod_spread: Mapping[O2IState, float] = { O2IState.LOS: 3.0, O2IState.NLOS: 10.0, O2IState.O2I: 5.0, } @staticmethod def _cluster_aod_spread(state: O2IState) -> float: return UrbanMicrocellsRealization.__cluster_aod_spread[state] # RMS cluster azimuth of arrival spread for different LOS states in degrees # TR 138.901 v17.0.0 Table 7.5-6 __cluster_aoa_spread: Mapping[O2IState, float] = { O2IState.LOS: 17.0, O2IState.NLOS: 22.0, O2IState.O2I: 8.0, } @staticmethod def _cluster_aoa_spread(state: O2IState) -> float: return UrbanMicrocellsRealization.__cluster_aoa_spread[state] # RMS cluster zenith of arrival spread for different LOS states in degrees # TR 138.901 v17.0.0 Table 7.5-6 __cluster_zoa_spread: Mapping[O2IState, float] = { O2IState.LOS: 7.0, O2IState.NLOS: 7.0, O2IState.O2I: 3.0, } @staticmethod def _cluster_zoa_spread(state: O2IState) -> float: return UrbanMicrocellsRealization.__cluster_zoa_spread[state] # Standard deviation of the shadowing for different LOS states in dB # TR 138.901 v17.0.0 Table 7.5-6 __cluster_shadowing_std: Mapping[O2IState, float] = { O2IState.LOS: 3.0, O2IState.NLOS: 3.0, O2IState.O2I: 4.0, } @staticmethod def _cluster_shadowing_std(state: O2IState) -> float: return UrbanMicrocellsRealization.__cluster_shadowing_std[state] @staticmethod def _zod_spread_mean(state: O2IState, parameters: ClusterDelayLineSampleParameters) -> float: # Implementation of TR 138.901 v17.0.0 Table 7.5-8 if state == O2IState.LOS: return ( max(-0.21, -14.8 * parameters.distance_2d / 1000) + 0.01 * abs(parameters.terminal_height - parameters.base_height) + 0.83 ) else: return ( max(-0.5, -3.1 * parameters.distance_2d / 1000) + 0.01 * max(parameters.terminal_height - parameters.base_height, 0.0) + 0.2 ) @staticmethod def _zod_spread_std(state: O2IState, parameters: ClusterDelayLineSampleParameters) -> float: # TR 138.901 v17.0.0 Table 7.5-8 return 0.35 @staticmethod def _zod_offset(state: O2IState, parameters: ClusterDelayLineSampleParameters) -> float: if state == O2IState.LOS: return 0.0 else: return -(10 ** (-1.5 * log10(max(10, parameters.terminal_height)) + 3.3))
[docs] def to_HDF(self, group: Group) -> None: ClusterDelayLineRealization.to_HDF(self, group) self.__los_realization.to_HDF(group.create_group("los_realization")) self.__nlos_realization.to_HDF(group.create_group("nlos_realization")) self.__o2i_realization.to_HDF(group.create_group("o2i_realization")) if self.expected_state is not None: group.attrs["expected_state"] = self.expected_state.value
[docs] @classmethod def From_HDF( cls: Type[UrbanMicrocellsRealization], group: Group, parameters: ClusterDelayLineRealizationParameters, sample_hooks: Set[ChannelSampleHook[ClusterDelayLineSample]], ) -> UrbanMicrocellsRealization: state_realization = ConsistentRealization.from_HDF(group["state_realization"]) los_realization = ConsistentRealization.from_HDF(group["los_realization"]) nlos_realization = ConsistentRealization.from_HDF(group["nlos_realization"]) o2i_realization = ConsistentRealization.from_HDF(group["o2i_realization"]) gain = group.attrs["gain"] if "gain" in group.attrs else 1.0 if "expected_state" in group.attrs: expected_state = O2IState(group.attrs["expected_state"]) else: expected_state = None return UrbanMicrocellsRealization( expected_state, state_realization, los_realization, nlos_realization, o2i_realization, parameters, sample_hooks, gain, )
[docs] class UrbanMicrocells(ClusterDelayLineBase[UrbanMicrocellsRealization, O2IState], Serializable): """3GPP cluster delay line preset modeling an urban street canyon.""" yaml_tag = "UMi" """YAML serialization tag.""" @property def max_num_clusters(self) -> int: return 19 @property def max_num_rays(self) -> int: return 20 @property def _large_scale_correlations(self) -> np.ndarray: # Large scale cross correlations # TR 138.901 v17.0.0 Table 7.5-6 return np.array( [ # LOS NLOS O2I [+0.5, +0.0, +0.4], # 0: ASD vs DS [+0.8, +0.4, +0.4], # 1: ASA vs DS [-0.4, -0.4, +0.0], # 2: ASA VS SF [-0.5, +0.0, +0.2], # 3: ASD vs SF [-0.4, -0.7, -0.5], # 4: DS vs SF [+0.4, +0.0, +0.0], # 5: ASD vs ASA [-0.2, +0.0, +0.0], # 6: ASD vs K [-0.3, +0.0, +0.0], # 7: ASA vs K [-0.7, +0.0, +0.0], # 8: DS vs K [+0.5, +0.0, +0.0], # 9: SF vs K [+0.0, +0.0, +0.0], # 10: ZSD vs SF [+0.0, +0.0, +0.0], # 11: ZSA vs SF [+0.0, +0.0, +0.0], # 12: ZSD vs K [+0.0, +0.0, +0.0], # 13: ZSA vs K [+0.0, -0.5, -0.6], # 14: ZSD vs DS [+0.2, +0.0, -0.2], # 15: ZSA vs DS [+0.5, +0.5, -0.2], # 16: ZSD vs ASD [+0.3, +0.5, +0.0], # 17: ZSA vs ASD [+0.0, +0.0, +0.0], # 18: ZSD vs ASA [+0.0, +0.2, +0.5], # 19: ZSA vs ASA [+0.0, +0.0, +0.5], # 20: ZSD vs ZSA ], dtype=np.float_, ).T def _initialize_realization( self, state_generator: ConsistentGenerator, parameter_generator: ConsistentGenerator, parameters: ClusterDelayLineRealizationParameters, ) -> UrbanMicrocellsRealization: # Generate realizations for each large scale state # TR 138.901 v17.0.0 Table 7.6.3.1-2 state_realization = state_generator.realize(50.0) los_realization = parameter_generator.realize(12.0) nlos_realization = parameter_generator.realize(15.0) o2i_realization = parameter_generator.realize(15.0) return UrbanMicrocellsRealization( self.expected_state, state_realization, los_realization, nlos_realization, o2i_realization, parameters, self.sample_hooks, self.gain, ) def _recall_specific_realization( self, group: Group, parameters: ClusterDelayLineRealizationParameters ) -> UrbanMicrocellsRealization: return UrbanMicrocellsRealization.From_HDF(group, parameters, self.sample_hooks)