Detection Probability Evaluator¶
- class DetectionProbEvaluator(radar)[source]¶
- Bases: - Evaluator,- Serializable- Estimates the probability of detection for a given radar detector. - Assumes a successful detection if the - Radar's- RadarReceptioncontains a non-empty point cloud. This is the case if the configured- RadarDetectormade a positive decision for any bin within the processed- RadarCube.- A minimal example within the context of a - Simulationevaluating the probability of detection for a single radar target illuminated by an- FMCWradar would be:- 1from hermespy.radar import Radar, FMCW, ThresholdDetector, DetectionProbEvaluator 2from hermespy.simulation import Simulation 3from hermespy.channel import SingleTargetRadarChannel 4 5# Create a new simulated scenario featuring a single device 6simulation = Simulation() 7device = simulation.new_device(carrier_frequency=60e9) 8 9# Configure the device to transmit and reveive radar waveforms 10radar = Radar(waveform=FMCW()) 11radar.detector = ThresholdDetector(.02, normalize=False) 12device.add_dsp(radar) 13 14# Create a new radar channel with a single illuminated target 15target = SingleTargetRadarChannel(1, 1., attenuate=True) 16simulation.scenario.set_channel(device, device, target) 17 18# Create a new detection probability evaluator 19simulation.add_evaluator(DetectionProbEvaluator(radar)) 20 21# Sweep over the target's RCS during the simulation 22simulation.new_dimension('radar_cross_section', [1, .8, .6, .4, .2, .1, 0], target) 23 24# Run the simulation 25result = simulation.run() - Parameters:
- radar ( - Radar) – Radar detector to be evaluated.
 - evaluate()[source]¶
- Evaluate the state of an investigated object. - Implements the process of extracting an arbitrary performance indicator, represented by the returned - Artifact\(X_m\).- Returns: Artifact \(X_m\) resulting from the evaluation. - Return type:
 
 - generate_result(grid, artifacts)[source]¶
- Generates an evaluation result from the artifacts collected over the whole simulation grid. - Parameters:
- grid ( - Sequence[- GridDimension]) – The Simulation grid.
- artifacts ( - ndarray) – Numpy object array whose dimensions represent grid dimensions.
 
- Return type:
 - Returns: The evaluation result. 
 
- class DetectionProbabilityEvaluation(evaluation)[source]¶
- Bases: - EvaluationTemplate[- bool,- ScatterVisualization]- Evaluation of the probability of detection for a radar detector. - Represents a boolean indicator of whether a target was detected or not. Generated by the - DetectionProbEvaluator’s- evaluate()method.- Parameters:
- evaluation ( - TypeVar(- ET)) – The represented evaluation.
 
- class DetectionProbArtifact(artifact)[source]¶
- Bases: - ArtifactTemplate[- bool]- Artifacto of the probability of detection for a radar detector. - Represents a boolean indicator of whether a target was detected or not. Generated by the - DetectionProbabilityEvaluation’s- artifact()method.- Parameters:
- artifact ( - TypeVar(- FAT, bound=- SupportsFloat)) – Artifact value.