# -*- coding: utf-8 -*-
from __future__ import annotations
from collections.abc import Sequence
from enum import Enum
from math import isclose
from typing import Any, Callable, overload, List, Optional, Tuple, Type, Union
import numpy as np
from hermespy.tools import db2lin, lin2db, DbConversionType
__author__ = "Jan Adler"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Jan Adler"]
__license__ = "AGPLv3"
__version__ = "1.4.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"
[docs]
class ValueType(Enum):
LIN = 0
"""Linear number."""
DB = 1
"""Logarithmic number."""
[docs]
class Logarithmic(float):
"""Representation of a logarithmic number."""
__value_db: float # Logarithmic value in dB
__conversion: DbConversionType # Conversion type of the logarithmic scale
def __init__(
self,
value: Union[float, int],
value_type: ValueType = ValueType.DB,
conversion: DbConversionType = DbConversionType.POWER,
) -> None:
"""
Args:
value (Union[float, int]):
Value of the logarithmic number.
value_type (ValueType, optional):
Assumed type of `value`.
Decibels by default.
conversion (DbConversionType, optional):
Conversion of logarithmic scale.
Power by default.
"""
value_db: float
if value_type is ValueType.DB:
value_db = value
elif value_type is ValueType.LIN:
value_db = lin2db(value, conversion)
else:
raise ValueError("Unknown value type")
if float(self) <= 0.0:
raise ValueError("Logarithmic scales can't express values smaller or equal to zero")
# Save attributes
self.__value_db = value_db
self.__conversion = conversion
def __new__(
cls: Type[Logarithmic],
value: Union[float, int],
value_type: ValueType = ValueType.DB,
conversion: DbConversionType = DbConversionType.POWER,
) -> Logarithmic:
"""
Args:
value (Union[float, int]):
Value of the logarithmic number.
value_type (ValueType, optional):
Assumed type of `value`.
Decibels by default.
conversion (DbConversionType, optional):
Conversion of logarithmic scale.
Power by default.
"""
# Force floating point values to prevent a nasty conversion bug
_value = float(value)
if value_type is ValueType.LIN:
return float.__new__(cls, _value)
if value_type is ValueType.DB:
return float.__new__(cls, db2lin(_value, conversion))
raise ValueError("Unknown value type")
[docs]
@classmethod
def From_Tuple(
cls: Type[Logarithmic],
linear: float,
logarithmic: float,
conversion: DbConversionType = DbConversionType.POWER,
) -> Logarithmic:
instance = cls.__new__(cls, linear, ValueType.LIN)
cls.__init__(instance, logarithmic, ValueType.DB, conversion)
return instance
@property
def value_db(self) -> float:
"""Logarithmic value of represented number.
Returns: Logarithmic value.
"""
return self.__value_db
@property
def conversion(self) -> DbConversionType:
"""Logarithmic conversion type.
Returns: Conversion type.
"""
return self.__conversion
def __add__(self, value: Union[Logarithmic, float, int]) -> Union[Logarithmic, float]:
"""Summing operation overload.
Args:
value (Union[Logarithmic, float, int]):
Value to be added to the represented logarithmic number.
Returns: Logarithmic sum representation.
"""
if isinstance(value, Logarithmic):
sum = float(self) + float(value)
return Logarithmic(sum, ValueType.LIN, self.conversion)
else:
return float.__add__(self, value)
def __sub__(self, value: Union[Logarithmic, float, int]) -> Union[Logarithmic, float]:
"""Substraction operation overload.
Args:
value (Union[Logarithmic, float, int]):
Value to be substracted from the represented logarithmic number.
Returns: Logarithmic substraction representation.
"""
if isinstance(value, Logarithmic):
sum = float(self) - float(value)
return Logarithmic(sum, ValueType.LIN, self.conversion)
else:
return float.__sub__(self, value)
def __mul__(self, value: Union[Logarithmic, float, int]) -> Union[Logarithmic, float]:
"""Multiplication operation overload.
Args:
value (Union[Logarithmic, float, int]):
Value to be multiplied to the represented logarithmic number.
Returns: Logarithmic multiplication representation.
"""
if isinstance(value, Logarithmic):
product = float(self) * float(value)
return Logarithmic(product, ValueType.LIN, self.conversion)
else:
return float.__mul__(self, value)
def __truediv__(self, value: Union[Logarithmic, float, int]) -> Union[Logarithmic, float]:
"""Division operation overload.
Args:
value (Union[Logarithmic, float, int]):
Value to be divided from the represented logarithmic number.
Returns: Logarithmic division representation.
"""
if isinstance(value, Logarithmic):
division = float(self) / float(value)
return Logarithmic(division, ValueType.LIN, self.conversion)
else:
return float.__truediv__(self, value)
def __str__(self) -> str:
"""Explicit type conversion to string.
Returns: Text representation of the represented :class:`Logarithmic` value.
"""
# Check if a pretty integer notation is possible
integer_representation = int(self.value_db)
if isclose(integer_representation, self.value_db):
return f"{integer_representation}dB"
# Resort to an ugly scientific notation otherwise
return f"{self.value_db:.2g}dB"
def __repr__(self) -> str:
"""Object representation overload.
Returns: Text representation of the :class:`Logarithmic` object.
"""
return f"<Log {str(self)}>"
def __reduce__(
self,
) -> Tuple[
Callable[[float, float, DbConversionType], Logarithmic],
Tuple[float, float, DbConversionType],
]:
"""Serialization callback for the Ray framework / pickle."""
return Logarithmic.From_Tuple, (float(self), self.value_db, self.conversion)
[docs]
class LogarithmicSequence(np.ndarray):
"""A sequence of logarithmic numbers."""
__values_db: List[float]
__conversion: DbConversionType
def __new__(
cls: Type[LogarithmicSequence],
values: Optional[Sequence[Union[float, int]]] = None,
value_type: ValueType = ValueType.DB,
conversion: DbConversionType = DbConversionType.POWER,
) -> LogarithmicSequence:
"""
Args:
values (Sequence[Union[float, int]], optional):
Initial content of the represented sequence.
If not provided, the sequence will be initialized as empty.
value_type (ValueType, optional):
Assumed type of `value`.
Decibels by default.
conversion (DbConversionType, optional):
Conversion of logarithmic scale.
Power by default.
"""
values = [] if values is None else values
scalar_values: List[float]
if value_type is ValueType.LIN:
scalar_values = [float(value) for value in values]
elif value_type is ValueType.DB:
scalar_values = [db2lin(float(value), conversion) for value in values]
else:
raise ValueError("Unknown value type")
cast = np.asarray(scalar_values, dtype=float).view(cls)
cast.__conversion = conversion
return cast
def __array_finalize__(self, instance: Union[np.ndarray, None]) -> None:
# Do nothing if the view is on None
if instance is None:
return # pragma: no cover
# Convert view
view = self.view(np.ndarray).flatten()
# Abort if a numpy boolean array is represented
# This is required to work around a strange bug in assert_array_almost_equal
if not issubclass(view.dtype.type, np.floating) or self.ndim < 1:
np.ndarray.__array_finalize__(self, instance)
return
# Recover initialization attributes
conversion = getattr(instance, "conversion", DbConversionType.POWER)
# Configure class atributes
self.__conversion = conversion
self.__values_db = [lin2db(float(value), conversion) for value in view]
@property
def conversion(self) -> DbConversionType:
"""Logarithmic conversion type.
Returns: Conversion type.
"""
return self.__conversion
[docs]
def tolist(self) -> List[Logarithmic]:
"""Convert to list representation.
Returns: List of logarithmics.
"""
return [
Logarithmic.From_Tuple(lin, log, self.conversion)
for lin, log in zip(self.view(np.ndarray), self.__values_db)
]
def __getitem__(self, i: Any) -> Union[Logarithmic, np.ndarray]: # type: ignore
if isinstance(i, (int, np.integer)):
return Logarithmic.From_Tuple(
np.ndarray.__getitem__(self, i), self.__values_db[i], self.conversion
)
return np.ndarray.__getitem__(self, i)
def __setitem__(self, i: int, item: Union[Logarithmic, float, int]) -> None:
# Convert non-logarithmic items to logarithmic
if isinstance(item, Logarithmic):
np.ndarray.__setitem__(self, i, float(item))
self.__values_db[i] = item.value_db
else:
np.ndarray.__setitem__(self, i, item)
self.__values_db[i] = lin2db(item, self.conversion)
def __reduce__(
self,
) -> Tuple[Type[LogarithmicSequence], Tuple[np.ndarray, ValueType, DbConversionType]]:
"""Serialization callback for the Ray framework."""
deserializer = LogarithmicSequence
serialized_data = (self.view(np.ndarray), ValueType.LIN, self.conversion)
return deserializer, serialized_data
@overload
def dB(
*values: Sequence[Union[int, float]], conversion: DbConversionType = DbConversionType.POWER
) -> LogarithmicSequence: ... # pragma no cover
@overload
def dB(
*values: Union[int, float], conversion: DbConversionType = DbConversionType.POWER
) -> Union[Logarithmic, LogarithmicSequence]: ... # pragma no cover
[docs]
def dB(
*values: Union[int, float, Sequence[Union[int, float]]],
conversion: DbConversionType = DbConversionType.POWER,
) -> Union[Logarithmic, LogarithmicSequence]:
"""Represent scalar value as logarithmic number.
Args:
*values (Tuple[Union[int, float]]):
Value or sequence of values to be represented as logarithmic.
conversion (DbConversionType, optional):
Conversion of logarithmic scale.
Power by default.
Returns: The logarithmic representation of `*values`.
"""
if isinstance(values[0], Sequence):
return LogarithmicSequence(values[0], value_type=ValueType.DB, conversion=conversion)
if any(isinstance(value, Sequence) for value in values):
raise ValueError("Only the first argument may be a sequence")
if len(values) == 1:
return Logarithmic(values[0], value_type=ValueType.DB, conversion=conversion)
return LogarithmicSequence(values, value_type=ValueType.DB, conversion=conversion) # type: ignore