Source code for hermespy.core.signal_model

# -*- coding: utf-8 -*-

from __future__ import annotations
from copy import deepcopy
from typing import Literal, List, Sequence, Tuple, Type, Any
from abc import ABC

import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
import numpy as np
from h5py import Group
from numba import jit, complex128
from scipy.constants import pi
from scipy.fft import fft, fftshift, fftfreq
from scipy.ndimage import convolve1d
from scipy.signal import butter, sosfilt, firwin

from .factory import HDFSerializable
from .visualize import PlotVisualization, VAT, VisualizableAttribute

__author__ = "Jan Adler"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Jan Adler"]
__license__ = "AGPLv3"
__version__ = "1.4.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"


[docs] class _SignalVisualization(VisualizableAttribute[PlotVisualization]): """Visualization of signal samples.""" __signal: Signal # The signal model to be visualized def __init__(self, signal: Signal) -> None: """ Args: signal (Signal): The signal model to be visualized. """ # Initialize base class super().__init__() # Initialize class attributes self.__signal = signal @property def signal(self) -> Signal: """The signal model to be visualized.""" return self.__signal
[docs] class _SamplesVisualization(_SignalVisualization): """Visualize the samples of a signal model.""" @property def title(self) -> str: return self.signal.title
[docs] def create_figure( self, space: Literal["time", "frequency", "both"] = "both", **kwargs ) -> Tuple[plt.FigureBase, VAT]: return plt.subplots(self.signal.num_streams, 2 if space == "both" else 1, squeeze=False)
def _prepare_visualization( self, figure: plt.Figure | None, axes: VAT, angle: bool = False, space: Literal["time", "frequency", "both"] = "both", legend: bool = True, **kwargs, ) -> PlotVisualization: # Prepare axes and lines lines = np.empty_like(axes, dtype=np.object_) zeros = np.zeros(self.signal.num_samples, dtype=np.float64) timestamps = self.signal.timestamps for stream_idx in range(self.signal.num_streams): ax_y_idx = 0 if space in {"both", "time"}: ax: plt.Axes = axes[stream_idx, ax_y_idx] ax.set_ylabel("Amplitude") if stream_idx == self.signal.num_streams - 1: ax.set_xlabel("Time-Domain [s]") time_lines = ax.plot(timestamps, zeros) + ax.plot(timestamps, zeros) if legend and stream_idx == 0: time_lines[0].set_label("Real") time_lines[1].set_label("Imag") ax.legend(loc="upper center", bbox_to_anchor=(0.5, 1.3), ncol=2, frameon=False) lines[stream_idx, ax_y_idx] = time_lines ax.add_line(time_lines[0]) ax.add_line(time_lines[1]) ax_y_idx += 1 if space in {"both", "frequency"}: freq_ax: plt.Axes = axes[stream_idx, ax_y_idx] freq_ax.set_ylabel("Abs") if stream_idx == self.signal.num_streams - 1: freq_ax.set_xlabel("Frequency-Domain [Hz]") frequency_lines = freq_ax.plot(timestamps, zeros) freq_ax.add_line(frequency_lines[0]) if angle: phase_axis = freq_ax.twinx() frequency_lines.extend(freq_ax.plot(timestamps, zeros)) phase_axis.set_ylabel("Angle [Rad]") lines[stream_idx, ax_y_idx] = frequency_lines return PlotVisualization(figure, axes, lines) def _update_visualization( self, visualization: PlotVisualization, space: Literal["time", "frequency", "both"] = "both", angle: bool = False, **kwargs, ) -> None: # Generate timestamps for time-domain plotting timestamps = self.signal.timestamps # Infer the axis indices to account for different plot time_axis_idx = 0 frequency_axis_idx = 1 if space == "both" else 0 # Generate / collect the data to be plotted for stream_samples, axes, lines in zip( self.signal.getitem(), visualization.axes, visualization.lines ): # Plot time space if space in {"both", "time"}: if self.signal.num_samples < 1: axes[time_axis_idx].text(0.5, 0.5, "NO SAMPLES", horizontalalignment="center") else: lines[time_axis_idx][0].set_data(timestamps, stream_samples.real) lines[time_axis_idx][1].set_data(timestamps, stream_samples.imag) # Rescale axes axes[time_axis_idx].relim() axes[time_axis_idx].autoscale_view(True, True, True) # Plot frequency space if space in {"both", "frequency"}: if self.signal.num_samples < 1: axes[frequency_axis_idx].text( 0.5, 0.5, "NO SAMPLES", horizontalalignment="center" ) else: frequencies = fftshift( fftfreq(self.signal.num_samples, 1 / self.signal.sampling_rate) ) bins = fftshift(fft(stream_samples)) lines[frequency_axis_idx][0].set_data(frequencies, np.abs(bins)) if angle: lines[frequency_axis_idx][1].set_data(frequencies, np.angle(bins)) # Rescale axes axes[frequency_axis_idx].relim() axes[frequency_axis_idx].autoscale_view(True, True, True)
[docs] class _EyeVisualization(_SignalVisualization): """Visualize the eye diagram of a signal model. Depending on the `domain` flag the eye diagram will either be rendered with the time-domain on the plot's x-axis .. plot:: import matplotlib.pyplot as plt from hermespy.simulation import SimulatedDevice from hermespy.modem import TransmittingModem, RaisedCosineWaveform device = SimulatedDevice() transmitter = TransmittingModem() waveform = RaisedCosineWaveform(modulation_order=16, oversampling_factor=16, num_preamble_symbols=0, symbol_rate=1e8, num_data_symbols=1000, roll_off=.9) transmitter.waveform = waveform device.add_dsp(transmitter) device.transmit().mixed_signal.eye(symbol_duration=1/waveform.symbol_rate, domain='time') plt.show() or on the complex plane .. plot:: import matplotlib.pyplot as plt from hermespy.simulation import SimulatedDevice from hermespy.modem import TransmittingModem, RaisedCosineWaveform device = SimulatedDevice() transmitter = TransmittingModem() waveform = RaisedCosineWaveform(modulation_order=16, oversampling_factor=16, num_preamble_symbols=0, symbol_rate=1e8, num_data_symbols=1000, roll_off=.9) transmitter.waveform = waveform device.add_dsp(transmitter) device.transmit().mixed_signal.eye(symbol_duration=1/waveform.symbol_rate, domain='complex') plt.show() Args: symbol_duration (float): Assumed symbol repetition interval in seconds. Will be rounded to match the signal model's sampling rate. line_width (float, optional): Line width of a single plot line. title (str, optional): Title of the plotted figure. `Eye Diagram` by default. domain (Literal["time", "complex"]): Plotting behaviour of the eye diagram. `time` by default. See above examples for rendered results. legend (bool, optional): Display a plot legend. Enabled by default. Only considered when in `time` domain plotting mode. linewidth (float, optional): Line width of the eye plot. :math:`.75` by default. symbol_cutoff (float, optional): Relative amount of symbols ignored during plotting. :math:`0.1` by default. This is required to properly visualize intersymbol interferences within the communication frame, since special effects may occur at the start and end. """ @property def title(self) -> str: return "Eye Diagram" def _prepare_visualization( self, figure: plt.Figure | None, axes: VAT, *, symbol_duration: float | None = None, domain: Literal["time", "complex"] = "time", legend: bool = True, linewidth: float = 0.75, symbol_cutoff: float = 0.1, **kwargs, ) -> PlotVisualization: if linewidth <= 0.0: raise ValueError(f"Plot line width must be greater than zero (not {linewidth})") if symbol_cutoff < 0.0 or symbol_cutoff > 1.0: raise ValueError(f"Symbol cutoff must be in the interval [0, 1] (not {symbol_cutoff})") _ax: plt.Axes = axes.flat[0] colors = self._get_color_cycle() _symbol_duration = symbol_duration if symbol_duration else 1 / self.signal.sampling_rate symbol_num_samples = int(_symbol_duration * self.signal.sampling_rate) num_symbols = self.signal.num_samples // symbol_num_samples num_cutoff_symbols = int(num_symbols * symbol_cutoff) if num_cutoff_symbols < 2: num_cutoff_symbols = 2 values_per_symbol = 2 * symbol_num_samples + 2 num_visualized_symbols = num_symbols - 2 * num_cutoff_symbols lines: List[Line2D] = [] if domain == "time": _ax.set_xlabel("Time-Domain [s]") _ax.set_ylabel("Normalized Amplitude") _ax.set_ylim((-1.1, 1.1)) _ax.set_xlim((-1.0, 1.0)) timestamps = ( np.arange(-symbol_num_samples - 1, 1 + symbol_num_samples, 1) / symbol_num_samples ) times = np.hstack([timestamps] * num_visualized_symbols) values = np.zeros_like(times, dtype=np.float64) values[::values_per_symbol] = float("nan") lines.extend(_ax.plot(times, values, color=colors[0], linewidth=linewidth)) lines.extend(_ax.plot(times, values, color=colors[1], linewidth=linewidth)) if legend: legend_elements = [ Line2D([0], [0], color=colors[0], label="Real"), Line2D([0], [0], color=colors[1], label="Imag"), ] _ax.legend(handles=legend_elements, loc="upper left", fancybox=True, shadow=True) elif domain == "complex": _ax.set_xlabel("Real") _ax.set_ylabel("Imag") num_cutoff_samples = num_cutoff_symbols * symbol_num_samples stream_slice = self.signal.getitem((0, slice(num_cutoff_samples, -num_cutoff_samples))) lines.extend( _ax.plot(stream_slice.real, stream_slice.imag, color=colors[0], linewidth=linewidth) ) else: raise ValueError(f"Unsupported plotting domain '{domain}'") lines_array = np.empty_like(axes, dtype=np.object_) lines_array.flat[0] = lines return PlotVisualization(figure, axes, lines_array) def _update_visualization( self, visualization: PlotVisualization, *, symbol_duration: float | None = None, domain: Literal["time", "complex"] = "time", symbol_cutoff: float = 0.1, **kwargs, ) -> None: _symbol_duration = symbol_duration if symbol_duration else 1 / self.signal.sampling_rate symbol_num_samples = int(_symbol_duration * self.signal.sampling_rate) num_symbols = self.signal.num_samples // symbol_num_samples num_cutoff_symbols = int(num_symbols * symbol_cutoff) if num_cutoff_symbols < 2: num_cutoff_symbols = 2 values_per_symbol = 2 * symbol_num_samples + 2 num_visualized_symbols = num_symbols - 2 * num_cutoff_symbols samples = self.signal.getitem() if domain == "time": values = np.empty(num_visualized_symbols * values_per_symbol, dtype=np.complex128) for n in range(num_symbols - 2 * num_cutoff_symbols): sample_offset = (n + num_cutoff_symbols) * symbol_num_samples values[n * values_per_symbol : (n + 1) * values_per_symbol - 1] = samples[ 0, sample_offset : sample_offset + values_per_symbol - 1 ] values[values_per_symbol - 1 :: values_per_symbol] = float("nan") + 1j * float("nan") # Normalize values abs_value = np.max(np.abs(samples)) if abs_value > 0.0: values /= np.max(np.abs(values)) # Update plot lines visualization.lines.flat[0][0].set_ydata(values.real) visualization.lines.flat[0][1].set_ydata(values.imag) elif domain == "complex": num_cutoff_samples = num_cutoff_symbols * symbol_num_samples stream_slice = samples[0, num_cutoff_samples:-num_cutoff_samples] visualization.lines.flat[0][0].set_data(stream_slice.real, stream_slice.imag)
[docs] class SignalBlock(np.ndarray): """A TxN matrix of complex entries representing signal samples over T streams and N time samples. Used in Signal to store pieces of signal samples. Use \"offset\" property to set the offset of this block relative to a signal start sample.""" _offset: int def __new__(cls, samples: Any, offset: int) -> SignalBlock: """Create a new SignalBlock instance. Args: samples (array_like): The object to be converted to a 2D matrix. Arrays of higher dim count are not allowed. Uses np.asarray for conversion. offset (int): Integer offset of this block in a signal model Raises: ValueError: If ndim of given samples is bigger then 2. """ # Create a ndarray obj = np.asarray(samples, dtype=np.complex128) # Add streams dim if only one stream was passed if obj.ndim == 1: obj = obj.reshape((1, obj.size)) # Validate elif obj.ndim > 2: raise ValueError(f"Samples must have ndim <= 2 ({obj.ndim} was given)") # Cast it to SignalBlock obj = obj.view(cls) # Assign attributes obj.offset = offset # type: ignore return obj # type: ignore def __array_finalize__(self, obj: np.ndarray | SignalBlock | None) -> None: if obj is None: return # pragma: no cover self.offset = getattr(obj, "offset", 0) def __getitem__(self, key: Any) -> SignalBlock: res = super().__getitem__(key) return SignalBlock(res, self.offset) @property def num_streams(self) -> int: """The number of streams within this signal block. Returns: int: The number of streams. """ return self.shape[0] @property def num_samples(self) -> int: """The number of samples within this signal block. Returns: int: The number of samples. """ return self.shape[1] @property def offset(self) -> int: """Get block's offset""" return self._offset @offset.setter def offset(self, value: int) -> None: """Set block's offset""" if value < 0: raise ValueError("Offset must be non-zero") self._offset = value @property def end(self) -> int: """Get block stop sample. b.num_samples = b.end - b.off""" return self._offset + self.shape[1] @property def power(self) -> np.ndarray: """Compute power of the modeled signal. Returns: The power of each modeled stream as a numpy vector. """ return self.energy / self.num_samples @property def energy(self) -> np.ndarray: """Compute the energy of the modeled signal. Returns: The energy of each modeled stream as a numpy vector. """ return np.sum(self.real**2 + self.imag**2, axis=1).view(np.ndarray)
[docs] def copy(self, order: Literal["K", "A", "C", "F"] | None = None) -> SignalBlock: """Copy this signal block to a new object. Args: order: Ignored. Returns: Signal: A copy of this signal model. """ if order is not None: raise NotImplementedError("order argument is not supported") return deepcopy(self)
[docs] def resample( self, sampling_rate_old: float, sampling_rate_new: float, aliasing_filter: bool = True ) -> SignalBlock: """Resample a signal block to a different sampling rate. Args: sampling_rate_old (float): Old sampling rate of the signal block in Hz. sampling_rate_new (float): New sampling rate of the signal block in Hz. aliasing_filter (bool, optional): Apply an anti-aliasing filter during downsampling. Enabled by default. Returns: SignalBlock: The resampled signal block. Raises: ValueError: If `sampling_rate_old` or `sampling_rate_new` are smaller or equal to zero. """ # Validate given sampling rate if sampling_rate_old <= 0.0 or sampling_rate_new <= 0.0: raise ValueError("Sampling rate must be greater than zero.") # Skip resampling if the same sampling rate was given if sampling_rate_old == sampling_rate_new: return self.copy() # Avoid resampling if this block does not contain samples if self.num_samples < 1: return self.copy() # Init samples_new = self.view(np.ndarray).copy() # Apply anti-aliasing if requested and downsampled if aliasing_filter and sampling_rate_new < sampling_rate_old: samples_new = self._resample_antialiasing( samples_new, 8, sampling_rate_new / sampling_rate_old ) # Resample samples_new = self._resample(samples_new, sampling_rate_old, sampling_rate_new) # Apply anti-aliasing if requested and upsampled if aliasing_filter and sampling_rate_new > sampling_rate_old: samples_new = self._resample_antialiasing( samples_new, 8, sampling_rate_old / sampling_rate_new ) # Create a new SignalBlock object from the resampled samples and return it as result off_new = round(self.offset * sampling_rate_new / sampling_rate_old) return SignalBlock(samples_new, off_new)
[docs] def append_samples(self, value: np.ndarray) -> SignalBlock: """Append samples to this signal block. Creates a new instance.""" # Validate value if value.shape[0] != self.num_streams: raise ValueError("Shape mismatch") return SignalBlock(np.append(self, value, 1), self.offset)
@staticmethod @jit(nopython=True) def _mix( target_samples: np.ndarray, stream_indices: np.ndarray, added_samples: np.ndarray, sampling_rate: float, frequency_distance: float, ) -> None: # pragma: no cover """Internal subroutine to mix two sets of signal model samples. Args: target_samples (numpy.ndarray): Target samples onto which `added_samples` will be mixed. added_samples (numpy.ndarray): Samples to be mixed onto `target_samples`. sampling_rate (float): Sampling rate in Hz, which both `target_samples` and `added_samples` must share. frequency_distance (float): Distance between the carrier frequencies of `target_samples` and `added_samples` in Hz. """ num_added_samples = added_samples.shape[1] # ToDo: Reminder, mixing like this currently does not account for possible delays. mix_sinusoid = np.exp( 2j * pi * np.arange(num_added_samples) * frequency_distance / sampling_rate ) target_samples[stream_indices, :num_added_samples] += added_samples * mix_sinusoid[None, :] @staticmethod def _resample_antialiasing(samples: np.ndarray, N: Any, Wn: Any) -> np.ndarray: """Internal subroutine for resampled method. Applies Butterworth filter to the given samples. Args: samples (numpy.ndarray): Samples to apply AA to. N (Any) and Wn (Any): The first two parameters of scipy.signal.butter.""" aliasing_filter = butter(N, Wn, btype="low", output="sos") return sosfilt(aliasing_filter, samples, axis=1) @staticmethod @jit(nopython=True) def _resample( signal: np.ndarray, input_sampling_rate: float, output_sampling_rate: float ) -> np.ndarray: # pragma: no cover """Internal subroutine to resample a given set of samples to a new sampling rate. Uses sinc-interpolation, therefore `signal` is assumed to be band-limited. Arguments: signal (numpy.ndarray): TxM matrix of T signal-streams to be resampled, each containing M time-discrete samples. input_sampling_rate (float): Rate at which `signal` is sampled in Hz. output_sampling_rate (float): Rate at which the resampled signal will be sampled in Hz. Returns: np.ndarray: MxT' matrix of M resampled signal streams. The number of samples T' depends on the sampling rate relations, e.i. T' = T * output_sampling_rate / input_sampling_rate . """ num_streams = signal.shape[0] num_input_samples = signal.shape[1] num_output_samples = round(num_input_samples * output_sampling_rate / input_sampling_rate) input_timestamps = np.arange(num_input_samples) / input_sampling_rate output_timestamps = np.arange(num_output_samples) / output_sampling_rate output = np.empty((num_streams, num_output_samples), dtype=complex128) for output_idx in np.arange(num_output_samples): # Sinc interpolation weights for single output sample interpolation_weights = ( np.sinc((input_timestamps - output_timestamps[output_idx]) * input_sampling_rate) + 0j ) # Resample all streams simultaneously output[:, output_idx] = signal @ interpolation_weights return output
[docs] class Signal(ABC, HDFSerializable): """Abstract base class for all signal models in HermesPy.""" filter_order: int = 10 # Order of the filters applied during superimposition _blocks: List[SignalBlock] _sampling_rate: float _carrier_frequency: float _noise_power: float _samples_visualization: _SamplesVisualization _eye_visualization: _EyeVisualization delay: float _num_streams: int
[docs] def from_ndarray(self, samples: np.ndarray): """Create a new signal using parameters from this signal. Equivalent to `create(samples, **self.kwargs)`.""" return self.Create(samples, **self.kwargs)
[docs] @staticmethod def Create( samples: np.ndarray | Sequence[np.ndarray], sampling_rate: float = 1.0, carrier_frequency: float = 0.0, noise_power: float = 0.0, delay: float = 0.0, offsets: List[int] = None, ) -> Signal: """Creates a signal model instance given signal samples. Subclasses of Signal should reroute the given arguments to init and return the result. Args: samples (numpy.ndarray | Sequence[np.ndarray]): Single or a sequence of 2D matricies with shapes MxT_i, where M - number of streams, T_i - number of samples in the matrix i. Note that M for each entry of the sequence must be the same. SignalBlock and Sequence[SignalBlock] can also be passed here. sampling_rate (float): Sampling rate of the signal in Hz. offsets (List[int]): Integer offsets of the samples if given in a sequence. Ignored if samples is not a Sequence of np.ndarray. len(offsets) must be equal to len(samples). Offset number i must be greater then offset i-1 + samples[i-1].shape[1]. Returns: SparseSignal if samples argument is a list of np.ndarrays. DenseSignal otherwise. """ if isinstance(samples, list) and len(samples) != 1: return SparseSignal( samples, sampling_rate, carrier_frequency, noise_power, delay, offsets ) return DenseSignal(samples, sampling_rate, carrier_frequency, noise_power, delay, offsets)
def __iter__(self): yield from self._blocks def __len__(self): """Get number of blocks in the signal model.""" return len(self._blocks) @staticmethod def _get_blocks_union( bs1: Sequence[SignalBlock], bs2: Sequence[SignalBlock] ) -> Tuple[np.ndarray, np.ndarray]: """Calculate new blocks offsets and ends for a union of 2 different signals. Returns: b_offs (numpy.ndarray): a list of new blocks offsets b_ends (numpy.ndarray): a list of new blocks ends""" # Get nonzero column indices for both signals nonzero_bs1 = ( np.concatenate([np.arange(b.offset, b.offset + b.num_samples) for b in bs1]) if len(bs1) != 0 else np.array([], int) ) nonzero_bs2 = ( np.concatenate([np.arange(b.offset, b.offset + b.num_samples) for b in bs2]) if len(bs2) != 0 else np.array([], int) ) # Join them (calculate a union) nz_cols_idx = np.union1d(nonzero_bs1, nonzero_bs2) # Transform column indices to new block starts and stops # Find block starts in the nz_cols_idx b_offs_idx = (np.ediff1d(nz_cols_idx) - 1).nonzero()[0] # b_offs_idx is not finished yet, but can be used to calculate block stops here b_stops = nz_cols_idx[np.append(b_offs_idx, -1)] + 1 # Now finish off the blocks offset indices array b_offs_idx += 1 b_offs_idx = np.concatenate([[0], b_offs_idx]) # Find blocks offsets b_offs = nz_cols_idx[b_offs_idx] return b_offs, b_stops @staticmethod def __parse_slice(s: slice, dim_size: int) -> Tuple[int, int, int]: """Helper function for _parse_validate_itemkey. Given a slice and a size of the sliced dimension, returns non-negative values for start, stop and step of the slice.""" # Resolve None s0 = 0 if s.start is None else s.start s1 = dim_size if s.stop is None else s.stop s2 = 1 if s.step is None else s.step # Resolve negative s0 = s0 if s0 >= 0 else s0 % dim_size s1 = s1 if s1 >= 0 else s1 % dim_size return s0, s1, s2 def _parse_validate_itemkey( self, key: Any ) -> Tuple[int, int, int, int, int, int, bool, bool, bool]: """Parse and validate key in __getitem__ and __setitem__. Raises: TypeError if key is not an int, a slice, a tuple of (int, int), (slice, slice), (int, slice) or (slice, int), a boolean mask. IndexError if the key is out of bounds of the signal model. Returns: s00 (int): streams start s01 (int): streams stop s02 (int): streams step s10 (int): samples start s11 (int): samples stop s12 (int): samples step isboolmask (bool): True if key is a boolean mask, False otherwise. should_flatten_streams (bool): True if numpy's getitem would flatten the streams (1) dimension with this key should_flatten_samples (bool): True if numpy's getitem would flatten the samples (2) dimension with this key Note that if isboolmask is True, then all s?? take the following values: (0, self.num_streams, 1, 0, self.num_samples, 1). Note that if the key references any dimension with an integer index, then the corresponding result start will be the index, and stop is start+1. For example, if key is 1, then only stream 1 is need. Then s00 is 1 and s01 is 2. Numpy getitem of [1] and [1:2] differ in dimensions. Flattening of the second variant should be considered. """ self_num_streams = self.num_streams self_num_samples = self.num_samples isboolmask = False should_flatten_streams = False should_flatten_samples = False # Key is a tuple of two # ====================================================================== if isinstance(key, tuple) and len(key) == 2: # Validate streams key streams_key_is_slice = isinstance(key[0], slice) samples_key_is_slice = isinstance(key[1], slice) if streams_key_is_slice: s00, s01, s02 = self.__parse_slice(key[0], self_num_streams) if s00 >= s01 and self_num_streams != 0: raise IndexError( f"Streams slice start must be lower then stop ({s00} >= {s01})" ) elif np.issubdtype(type(key[0]), np.integer): if key[0] >= self_num_streams: raise IndexError( f"Streams index is out of bounds (number of streams is {self_num_streams}, but stream {key[0]} was requested)" ) s00 = key[0] % self_num_streams s01 = s00 + 1 s02 = 1 should_flatten_streams = True else: raise TypeError( f"Expected to get streams index as an integer or a slice, but got {type(key[0])}" ) # Parse samples key (key[1]) # Samples are indexed with an int if samples_key_is_slice: s10, s11, s12 = self.__parse_slice(key[1], self_num_samples) elif np.issubdtype(type(key[1]), np.integer): if key[1] >= self_num_samples: raise IndexError(f"Samples index is out of bounds ({key[1]} > {len(self)})") s10 = key[1] % self_num_samples s11 = s10 + 1 s12 = 1 should_flatten_samples = True else: raise TypeError(f"Samples key is ofan unsupported type ({type(key[1])})") return ( s00, s01, s02, s10, s11, s12, False, should_flatten_streams, should_flatten_samples, ) # ====================================================================== # done Key is a tuple of two # Samples key is considered to be not given from now on s10 = 0 s11 = self_num_samples s12 = 1 # Parse streams key # Key is a slice over streams if isinstance(key, slice): s00, s01, s02 = self.__parse_slice(key, self_num_streams) if s00 >= s01: raise IndexError(f"Streams slice start must be lower then stop ({s00} >= {s01})") # Key is an integer index over streams elif np.issubdtype(type(key), np.integer): if key >= self_num_streams: raise IndexError( f"Streams index is out of bounds (number of streams is {self_num_streams}, but stream {key} was requested)" ) s00 = key % self_num_streams s01 = s00 + 1 s02 = 1 should_flatten_streams = True # Key is a boolean mask or something unsupported else: try: if np.asarray(key, dtype=bool).shape == (self_num_streams, self_num_samples): isboolmask = True s00 = 0 s01 = self_num_streams s02 = 1 else: raise ValueError except ValueError: raise TypeError(f"Unsupported key type {type(key)}") return ( s00, s01, s02, s10, s11, s12, isboolmask, should_flatten_streams, should_flatten_samples, ) def _find_affected_blocks(self, s10: int, s11: int) -> Tuple[int, int]: """Find indices of blocks that are affected by the given samples slice. Arguments: s10 (int): Start of the samples slice. s11 (int): Stop of the samples slice. Return: b_start, b_stop (int, int): Indices of the first and the last affected blocks.""" # Done with a binary search algotrithm. # Starting block L = 0 R = len(self) - 1 b_start = L while L < R: b_start = -((R + L) // -2) # upside-down floor division if self._blocks[b_start].offset > s10: R = b_start - 1 else: L = b_start if self._blocks[b_start].offset > s10 and b_start != 0: b_start -= 1 # Stopping block L = 0 R = len(self) - 1 b_stop = R while L < R: b_stop = (R + L) // 2 if self._blocks[b_stop].end < s11: L = b_stop + 1 else: R = b_stop if self._blocks[b_stop].end < s11 and (len(self._blocks) - 1) > b_stop: b_stop += 1 return b_start, b_stop
[docs] def getitem(self, key: Any = slice(None, None), unflatten: bool = True) -> np.ndarray: """Get specified samples. Works like np.ndarray.__getitem__, but de-sparsifies the signal. Arguments: key (Any): an int, a slice, a tuple (int, int), (int, slice), (slice, int), (slice, slice) or a boolean mask. Defaults to slice(None, None) (same as [:, :]) unflatten (bool): Set to True to ensure the result ndim to be 2 even if only one stream is selected. Set to False to allow the numpy-like degenerate dimensions reduction. Examples: getitem(slice(None, None)): Select all samples from the signal. Warning: can cause memory overflow if used with a sparse signal. getitem(0): Select and de-sparsify the first stream. Result shape is (1, num_samples) getitem(0, False): Same, but allow the numpy flattening. Result shape is (num_samples,) getitem((slice(None, 2), slice(50, 100))): Select streams 0, 1 and samples 50-99. Same as samples_matrix[:2, 50:100] Returns: np.ndarray with ndim 2 or less and dtype dtype np.complex128""" s00, s01, s02, s10, s11, s12, isboolmask, should_flatten_streams, should_flatten_samples = ( self._parse_validate_itemkey(key) ) num_streams = -((s01 - s00) // -s02) num_samples = -((s11 - s10) // -s12) if self.num_samples == 0 or self.num_streams == 0: # if this signal is empty return np.zeros((num_streams, num_samples), np.complex128) # If key is a boolean mask if isboolmask: mask = np.array(key, dtype=bool) return self.to_dense()._blocks[0].view(np.ndarray)[mask] # Find blocks hit by the samples slice b_start, b_stop = self._find_affected_blocks(s10, s11) # Slicing is done inside one or no blocks if b_start == b_stop: b = self._blocks[b_stop] res = np.zeros((num_streams, num_samples), dtype=np.complex128) # if slicing is done inside only one block entirely if s10 >= b.offset: b_sliced = b[s00:s01:s02, s10 - b.offset : s11 - b.offset : s12] res[:, : b_sliced.shape[1]] = b_sliced # else if the slice starts in a zero gap and ends somewhere inside the block # v slice v # xxxxxxxxxxxx00000xxxxxxxxxxxxxxxx # ^b previous^^gap^^b_start/b_stop^ elif s11 > b.offset: res[:, b.offset - s10 :] = b[s00:s01:s02, :] # Apply numpy-like flattening if not unflatten and (should_flatten_streams or should_flatten_samples): res = res.flatten() return res # assemble the result res = np.zeros((self.num_streams, s11 - s10), dtype=np.complex128) # the first block b = self._blocks[b_start] if s10 < b.end: w_size = s10 - b.offset if w_size <= 0: # slice starts before the first window res[:, -w_size : b.shape[1] - w_size] = b[:, :] else: b_sliced = b[:, -w_size:] res[:, : b_sliced.shape[1]] = b_sliced # blocks between the first and the last ones for i in range(b_start + 1, b_stop): b = self._blocks[i] w_start = b.offset - s10 w_end = w_start + b.shape[1] res[:, w_start:w_end] = b[:, :] # the last block b = self._blocks[b_stop] w_start = res.shape[1] - s11 + b.offset w_stop = min(w_start + b.shape[1], res.shape[1]) res[:, w_start:w_stop] = b[:, : w_stop - w_start] # Apply stream slicing and the samples step. # The following check is required for proper handling # of the streams key that looks like slice(None, None, -*something*). # In this case, (s00, s01, s02) will be (0, num_streams, -*something*). # Slicing by [0:num_streams:-*something*] and [::-*something*] # yield different results. We would like to get the second one. is_streams_step_reversing = ( isinstance(key, slice) and key.start is None and key.stop is None ) is_streams_step_reversing |= ( isinstance(key, tuple) and isinstance(key[0], slice) and key[0].start is None and key[0].stop is None ) if is_streams_step_reversing: return res[::s02, ::s12] res = res[s00:s01:s02, ::s12] # Apply numpy-like flattening if not unflatten and (should_flatten_streams or should_flatten_samples): res = res.flatten() return res
[docs] def getstreams(self, streams_key: int | slice | Sequence[int]) -> Signal: """Create a new signal like this, but with only the selected streams. Args: streams_key (int, slice, Sequence[int]): Stream indices to select. Return: signal (Signal): Signal of the same implementation as the caller, containing only the selected streams """ blocks = [b[streams_key] for b in self] return self.Create(blocks, **self.kwargs)
def __setitem__(self, key: Any, value: Any) -> None: """Set an np.ndarray of samples into the model.""" ... # pragma: no cover @property def kwargs(self) -> dict: """Returns: {"sampling_rate": self.sampling_rate, "carrier_frequency": self.carrier_frequency, "delay": self.delay, "noise_power": self.noise_power}""" return { "sampling_rate": self.sampling_rate, "carrier_frequency": self.carrier_frequency, "delay": self.delay, "noise_power": self.noise_power, } @staticmethod def _validate_samples_offsets( samples: np.ndarray | Sequence[np.ndarray], offsets: List[int] | None = None ) -> Tuple[Sequence[np.ndarray], List[int]]: """Raises ValueError if any of the following fails: 1. samples is a 2D matrix or a Sequence of 2D matrices with similar number of streams (e.g. samples[i].shape[0] == samples[i+1].shape[0]). 2. offsets (if given) has the same length as samples argument. 3. samples windows with given offsets do not overlap. Returns: samples (Sequence[np.ndarray]): A python list if 2D matrices. offsets (List[int]): A list of valid offsets.""" # np.ndarray was given if isinstance(samples, np.ndarray): if samples.ndim == 1: # vector or np.ndarray or objects if samples.dtype != object: # vector samples = [samples.reshape((1, samples.size)).astype(np.complex128)] else: samples = samples.tolist() # pragma: no cover elif samples.ndim == 2: # 2D matrix samples = [samples.astype(np.complex128)] elif samples.ndim == 3: # Tensor of 2D matrices samples = [np.asarray(s, np.complex128) for s in samples] else: # Higher dim tensor raise ValueError( f"ndarrays of more then 3 dims are not acceptable ({samples.ndim} were given)" ) # samples is Sequence[np.ndarray] from now on # Check if samples list is empty if len(samples) == 0: return ([np.ndarray((0, 0), dtype=np.complex128)], [0]) # Validate and adjust samples num_streams = samples[0].shape[0] if samples[0].ndim == 2 else 1 for i in range(len(samples)): # dtype if not np.iscomplexobj(samples[i]): samples[i] = samples[i].astype(np.complex128) # type: ignore # ndim if samples[i].ndim == 1: samples[i] = samples[i].reshape((1, samples[i].size)) # type: ignore elif samples[i].ndim != 2: raise ValueError( f"ndarrays of more then 3 dims are not acceptable (One of samples entries has {samples[i].ndim} ndim)" ) # num_streams if samples[i].shape[0] != num_streams: raise ValueError( f"At least one if the samples blocks contains different number of streams (samples[0].shape[0] is {num_streams}, but samples[{i}].shape[0] is {samples[i].shape[0]})" ) # Validate offsets length if offsets is not None and len(offsets) != len(samples): raise ValueError( f"samples and offsets legthes do not match ({len(samples)} and {len(offsets)})" ) # Resolve offsets from samples, if offsets argument is None offsets_: List[int] if offsets is None: offsets_ = np.empty((len(samples),), int).tolist() offsets_[0] = getattr(samples[0], "_offset", 0) for i in range(1, len(samples)): offsets_[i] = getattr( samples[i], "_offset", offsets_[i - 1] + samples[i - 1].shape[1] ) else: offsets_ = offsets # Validate the offsets for i in range(1, len(samples)): gap_start = offsets_[i - 1] + samples[i - 1].shape[1] if offsets_[i] < gap_start: raise ValueError( f"One of the blocks contains incorrect offset in this sequence (previous block ends on {gap_start}, this block's offset is {offsets_[i]})" ) return samples, offsets_ # type: ignore
[docs] def set_samples( self, samples: np.ndarray | Sequence[np.ndarray] | Sequence[SignalBlock], offsets: List[int] | None = None, ) -> None: """Sets given samples into this dense signal model. Validates given samples and optional offsets, writes them into _blocks attribute and resambles, if needed. """ samples, offsets = self._validate_samples_offsets(samples, offsets) # _blocks self._blocks = [] for b, o in zip(samples, offsets): self._blocks.append(SignalBlock(b, o)) # num_streams self._num_streams = 0 if len(samples) == 0 else samples[0].shape[0]
[docs] @staticmethod def Empty(sampling_rate: float, num_streams: int = 0, num_samples: int = 0, **kwargs) -> Signal: """Creates an empty signal model instance. Initializes it with the given arguments. If both num_streams and num_samples are not 0, then initilizes samples with np.empty.""" return Signal.Create(np.empty((num_streams, num_samples)), sampling_rate, **kwargs)
@property def num_streams(self) -> int: """The number of streams within this signal model. Returns: int: The number of streams. """ return self._num_streams @property def num_samples(self) -> int: """The number of samples within this signal model. Returns: int: The number of samples. """ if len(self._blocks) == 0: return 0 return self._blocks[-1].end @property def shape(self) -> tuple: """Returns: (num_streams, num_samples)""" return (self.num_streams, self.num_samples) @property def sampling_rate(self) -> float: """The rate at which the modeled signal was sampled. Returns: float: The sampling rate in Hz. """ return self._sampling_rate @sampling_rate.setter def sampling_rate(self, value: float) -> None: """Modify the rate at which the modeled signal was sampled. Args: value (float): The sampling rate in Hz. Raises: ValueError: If `value` is smaller or equal to zero. """ if value <= 0.0: raise ValueError("The sampling rate of modeled signals must be greater than zero") self._sampling_rate = value for b in self: b._sampling_rate = value @property def carrier_frequency(self) -> float: """The center frequency of the modeled signal in the radio-frequency transmit band. Returns: float: The carrier frequency in Hz. """ return self._carrier_frequency @carrier_frequency.setter def carrier_frequency(self, value: float) -> None: """Modify the center frequency of the modeled signal in the radio-frequency transmit band. Args: value (float): he carrier frequency in Hz. Raises: ValueError: If `value` is smaller than zero. """ if value < 0.0: raise ValueError("The carrier frequency of modeled signals must be non-negative") self._carrier_frequency = value for b in self: b._carrier_frequency = value @property def noise_power(self) -> float: """Noise power of the superimposed noise signal. Returns: Noise power. Raises: ValueError: If the noise power is smaller than zero. """ return self._noise_power @noise_power.setter def noise_power(self, value: float) -> None: if value < 0.0: raise ValueError("Noise power must be greater or equal to zero") self._noise_power = value for b in self: b._noise_power = value @property def power(self) -> np.ndarray: """Compute the power of the modeled signal. Returns: The power of each modeled stream within a numpy vector. """ if self.num_samples < 1: return np.zeros(self.num_streams) return self.energy / self.num_samples @property def energy(self) -> np.ndarray: """Compute the energy of the modeled signal. Returns: The energy of each modeled stream within a numpy vector. """ return np.sum([b.energy for b in self], 0) @property def timestamps(self) -> np.ndarray: """The sample-points of the signal block. Returns: np.ndarray: Vector of length T containing sample-timestamps in seconds. """ return np.arange(self.num_samples) / self.sampling_rate @property def frequencies(self) -> np.ndarray: """The signal model's discrete sample points in frequcy domain. Returns: Numpy vector of frequency bins. """ return fftfreq(self.num_samples, 1 / self.sampling_rate) @property def duration(self) -> float: """Signal model duration in time-domain. Returns: float: Duration in seconds. """ return self.num_samples / self.sampling_rate @property def title(self) -> str: return "Dense Signal Model" # pragma: no cover @property def plot(self) -> _SamplesVisualization: """Visualize the samples of the signal model.""" return self._samples_visualization @property def eye(self) -> _EyeVisualization: """Visualize the eye diagram of the signal model.""" return self._eye_visualization
[docs] def copy(self) -> Signal: """Copy this signal model to a new object. Returns: Signal: A copy of this signal model. """ return deepcopy(self)
[docs] def resample(self, sampling_rate: float, aliasing_filter: bool = True) -> Signal: """Resample the modeled signal to a different sampling rate. Args: sampling_rate (float): Sampling rate of the new signal model in Hz. aliasing_filter (bool, optional): Apply an anti-aliasing filter during downsampling. Enabled by default. Returns: Signal: The resampled signal model. Raises: ValueError: If `sampling_rate` is smaller or equal to zero. """ signal_new = self.Empty(num_streams=self.num_streams, **self.kwargs) signal_new._blocks = [ b.resample(self.sampling_rate, sampling_rate, aliasing_filter) for b in self ] signal_new._sampling_rate = sampling_rate return signal_new
[docs] def superimpose( self, added_signal: Signal, resample: bool = True, aliasing_filter: bool = True, stream_indices: Sequence[int] | None = None, ) -> None: """Superimpose an additive signal model to this model. Internally re-samples `added_signal` to this model's sampling rate, if required. Mixes `added_signal` according to the carrier-frequency distance. Args: added_signal (Signal): The signal to be superimposed onto this one. resample (bool): Allow for dynamic resampling during superposition. aliasing_filter (bool, optional): Apply an anti-aliasing filter during mixing. stream_indices (Sequence[int], optional): Indices of the streams to be mixed. Raises: ValueError: If `added_signal` contains a different number of streams than this signal model. RuntimeError: If resampling is required but not allowd. NotImplementedError: If the delays if this signal and `added_signal` differ. """ # Do nothing if the added signal is empty if added_signal.num_samples == 0: return # Parse stream indices num_streams = added_signal.num_streams if stream_indices is None else len(stream_indices) _stream_indices = ( np.arange(num_streams) if stream_indices is None else np.array(stream_indices, dtype=np.int_) ) # Abort if zero streams are selected # This case occurs frequently when devices transmit to devices without receiving antennas if len(_stream_indices) < 1: return # Validate if _stream_indices.max() >= self.num_streams: raise ValueError(f"Stream indices must be in the interval [0, {self.num_streams - 1}]") if self.delay != added_signal.delay: raise NotImplementedError( "Superimposing signal models of differing delay is not yet supported" ) if added_signal.sampling_rate != self.sampling_rate and not resample: raise RuntimeError("Resampling required but not allowed") # Apply an aliasing filter to the added signal frequency_distance = added_signal.carrier_frequency - self.carrier_frequency filter_center_frequency = 0.5 * frequency_distance filter_bandwidth = 0.5 * (added_signal.sampling_rate + self.sampling_rate) - abs( frequency_distance ) if filter_bandwidth <= 0.0: return added_signal_copy = added_signal.copy() if aliasing_filter and filter_bandwidth < added_signal.sampling_rate: filter_coefficients = firwin( 1 + self.filter_order, 0.5 * filter_bandwidth, width=0.5 * filter_bandwidth, fs=added_signal_copy.sampling_rate, ).astype(complex) filter_coefficients *= np.exp( 2j * np.pi * (filter_center_frequency - added_signal.carrier_frequency) / added_signal_copy.sampling_rate * np.arange(1 + self.filter_order) ) for i in range(len(added_signal_copy)): added_signal_copy._blocks[i][:, :] = convolve1d( added_signal_copy._blocks[i], filter_coefficients, axis=1 ) # Resample the added signal if the respective sampling rates don't match added_signal_resampled = added_signal_copy.resample(self.sampling_rate, False) # Append zeros to self if num_samples is to small if added_signal_resampled.num_samples > self.num_samples: self.append_samples( np.zeros( (self.num_streams, added_signal_resampled.num_samples - self.num_samples), np.complex128, ) ) # Create new blocks for the signals' intersections # and insert the mix results there b_offs, b_stops = self._get_blocks_union(self._blocks, added_signal_resampled._blocks) res_ws = np.empty((b_offs.size,), dtype=object) fd_sr_ratio = frequency_distance / self.sampling_rate for i in range(b_offs.size): w_off = b_offs[i] w_stop = b_stops[i] w_self = self.getitem((slice(None, None), slice(w_off, w_stop))) if w_self.shape[1] < w_stop - w_off: w_self = np.append( w_self, np.zeros((num_streams, w_stop - w_off - w_self.shape[1]), np.complex128), axis=1, ) # pragma: no cover w_them = added_signal_resampled.getitem((slice(None, None), slice(w_off, w_stop))) if w_them.shape[1] < w_stop - w_off: w_them = np.append( w_them, np.zeros((num_streams, w_stop - w_off - w_them.shape[1]), np.complex128), axis=1, ) # pragma: no cover mix_sin = np.exp(2.0j * pi * np.arange(w_off, w_stop) * fd_sr_ratio) res_ws[i] = (w_self + mix_sin * w_them)[_stream_indices] # Construct new signal blocks self._blocks = [SignalBlock(res_ws[i], b_offs[i]) for i in range(len(b_offs))]
[docs] def append_samples(self, signal: Signal | np.ndarray) -> None: """Append samples in time-domain to the signal model. Args: signal (Signal): The signal to be appended. Raise: ValueError: If the number of streams don't align. """ ... # pragma: no cover
[docs] def append_streams(self, signal: Signal | np.ndarray) -> None: """Append streams to the signal model. Args: signal (Signal): The signal to be appended. Raise: ValueError: If the number of samples don't align. """ ... # pragma: no cover
[docs] def to_interleaved(self, data_type: Type = np.int16, scale: bool = True) -> np.ndarray: """Convert the complex-valued floating-point model samples to interleaved integers. Args: data_type (optional): Numpy resulting data type. scale (bool, optional): Scale the floating point values to stretch over the whole range of integers. Returns: samples (numpy.ndarray): Numpy array of interleaved samples. Will contain double the samples in time-domain. """ # Get samples samples = self.getitem() # Scale samples if required if scale and samples.shape[1] > 0 and (samples.max() > 1.0 or samples.min() < 1.0): samples /= np.max(abs(samples)) # pragma: no cover samples *= np.iinfo(data_type).max return samples.view(np.float64).astype(data_type)
[docs] @classmethod def from_interleaved( cls, interleaved_samples: np.ndarray, scale: bool = True, **kwargs ) -> Signal: """Initialize a signal model from interleaved samples. Args: interleaved_samples (numpy.ndarray): Numpy array of interleaved samples. scale (bool, optional): Scale the samples after interleaving **kwargs: Additional class initialization arguments. """ complex128samples = ( interleaved_samples.astype(np.float64).view(np.complex128).view(np.complex128) ) if scale: complex128samples /= np.iinfo(interleaved_samples.dtype).max return cls.Create(samples=complex128samples, **kwargs)
[docs] def to_dense(self) -> DenseSignal: """Concatenate all the blocks in the signal into one block. Accounts for offsets. Warning - if offset values are to big, memory overflow is possible. Returns: signal (DenseSignal): Dense form for this signal""" res_b = np.zeros(self.shape, dtype=np.complex128) for b in self: res_b[:, b.offset : b.offset + b.num_samples] = b return DenseSignal(res_b, **self.kwargs)
@classmethod def from_HDF(cls, group: Group) -> Signal: # De-serialize attributes sampling_rate = group.attrs.get("sampling_rate", 1.0) carrier_frequency = group.attrs.get("carrier_frequency", 0.0) delay = group.attrs.get("delay", 0.0) noise_power = group.attrs.get("noise_power", 0.0) num_streams = group.attrs.get("num_streams", 0) # De-serialize blocks num_blocks = group.attrs.get("num_blocks", 0) offsets = np.array(group["offsets"], int) blocks = [ SignalBlock(np.array(group[f"block{i}"], np.complex128), offsets[i]) for i in range(num_blocks) ] res = cls.Create( samples=blocks, sampling_rate=sampling_rate, carrier_frequency=carrier_frequency, delay=delay, noise_power=noise_power, ) res._num_streams = num_streams return res def to_HDF(self, group: Group) -> None: # Serialize attributes group.attrs["carrier_frequency"] = self.carrier_frequency group.attrs["sampling_rate"] = self.sampling_rate group.attrs["num_streams"] = self.num_streams group.attrs["num_samples"] = self.num_samples group.attrs["power"] = self.power group.attrs["delay"] = self.delay group.attrs["noise_power"] = self.noise_power # Serialize samples group.attrs["num_blocks"] = len(self._blocks) for i in range(len(self._blocks)): self._write_dataset(group, f"block{i}", self._blocks[i]) self._write_dataset(group, "offsets", [b.offset for b in self]) self._write_dataset(group, "timestamps", self.timestamps)
[docs] class DenseSignal(Signal): """Dense signal model class.""" def __init__( self, samples: np.ndarray | Sequence[np.ndarray] | Sequence[SignalBlock], sampling_rate: float = 1.0, carrier_frequency: float = 0.0, noise_power: float = 0.0, delay: float = 0.0, offsets: List[int] = None, ) -> None: """Signal model initialization. Args: samples (numpy.ndarray | Sequence[np.ndarray] | Sequence[SignalBlock]): A MxT matrix containing uniformly sampled base-band samples of the modeled signal. M is the number of individual streams, T the number of available samples. Note that you can pass here a 2D ndarray, a SignalBlock, a Sequence[np.ndarray] or a Sequence[SignalBlock]. Given Sequence[SignalBlock], concatenates all signal blocks into one, accounting for their offsets. Given Sequence[np.ndarray], concatenates them all into one matrix sequentially. Warning: do not pass sparse sequences of SignalBlocks here as it can lead to memory bloat. Consider SparseSignal instead. sampling_rate (float): Sampling rate of the modeled signal in Hz (in the base-band). carrier_frequency (float, optional): Carrier-frequency of the modeled signal in the radio-frequency band in Hz. Zero by default. noise_power (float, optional): Power of the noise superimposed to this signal model. Zero by default. delay (float, optional): Delay of the signal in seconds. Zero by default. offsets (List[int], optional): If provided, must be of the same length as the samples argument. If samples argument is not an Sequence[SignalBlock], then offsets will be used to dislocate the blocks in the signal. """ # Initialize base classes HDFSerializable.__init__(self) self._blocks = [] # Initialize attributes self.sampling_rate = sampling_rate self.carrier_frequency = carrier_frequency self.delay = delay self.noise_power = noise_power self._samples_visualization = _SamplesVisualization(self) self._eye_visualization = _EyeVisualization(self) # Initialize blocks self.set_samples(samples, offsets)
[docs] @staticmethod def Create( samples: np.ndarray | Sequence[np.ndarray], sampling_rate: float = 1.0, carrier_frequency: float = 0.0, noise_power: float = 0.0, delay: float = 0.0, offsets: List[int] = None, ) -> DenseSignal: return DenseSignal(samples, sampling_rate, carrier_frequency, noise_power, delay, offsets)
[docs] def getitem(self, key: Any = slice(None, None), unflatten: bool = True) -> np.ndarray: """Reroutes the argument to the single block of this model. Refer the numpy.ndarray.__getitem__ documentation. The result is always a 2D ndarray.""" res = self._blocks[0].view(np.ndarray)[key] # de-flatten if unflatten and res.ndim == 1: streams_flattened, samples_flattened = self._parse_validate_itemkey(key)[-2:] if streams_flattened and samples_flattened: return res.reshape(()) elif streams_flattened: return res.reshape((1, res.size)) elif samples_flattened: return res.reshape((res.size, 1)) return res
def __setitem__(self, key: Any, value: Any) -> None: self._blocks[0][key] = value
[docs] def set_samples( self, samples: np.ndarray | Sequence[np.ndarray] | Sequence[SignalBlock], offsets: List[int] | None = None, ) -> None: """Sets given samples into this dense signal model. SignalBlock or Sequence[SignalBlock] can be provided in samples. In this case they all will be resampled and the offsets argument will be ignored. A single 2D ndarray can be provided to construct a SignalBlock. Offsets will be ignored. A Sequence[ndarray] can be provided. If no offsets are given, then they all will be concatenated. If offsets are provided, the samples will be concatenated, including zero gaps accounting for offsets. If samples is Sequence[SignalBlock] and offsets are provided, blocks' offsets will be ignored Warning: avoid using sparse offsets as this can cause a memory bloat. Consider SparseSignal instead. """ super().set_samples(samples, offsets) # De-sparsify the samples if len(self) < 2: return res = np.zeros(self.shape, np.complex128) for b in self: res[:, b.offset : b.end] = b self._blocks = [SignalBlock(res, 0)]
@property def title(self) -> str: return "Dense Signal Model" @property def power(self) -> np.ndarray: if self.num_samples < 1: return np.zeros(self.num_streams) return self._blocks[0].power @property def energy(self) -> np.ndarray: return self._blocks[0].energy
[docs] @staticmethod def Empty( sampling_rate: float, num_streams: int = 0, num_samples: int = 0, **kwargs ) -> DenseSignal: return DenseSignal( np.empty((num_streams, num_samples), dtype=complex), sampling_rate, **kwargs )
[docs] def append_samples(self, signal: Signal | np.ndarray) -> None: # Resample the signal added_blocks_resampled: Sequence[np.ndarray] if isinstance(signal, Signal): added_blocks_resampled = signal.resample(self.sampling_rate)._blocks else: added_blocks_resampled = [signal] # Check if all the signal attributes match for prop in self.kwargs.items(): if getattr(signal, prop[0], prop[1]) != prop[1]: raise ValueError(f"Signal attribute {prop[0]} does not match") # Adapt number of streams to fit the appended signal if this signal is empty if self.num_streams < 1: self._blocks = [ SignalBlock(np.empty((signal.shape[0], 0), dtype=complex), 0) # pragma: no cover ] # Append all blocks from the signal to self block off = self._blocks[0].offset for b in added_blocks_resampled: samples_new = np.append(self._blocks[0], b, axis=1) self._blocks[0] = SignalBlock(samples_new, off)
[docs] def append_streams(self, signal: Signal | np.ndarray) -> None: # Adapt the number of samples if this signal is empty to match the signal to be appended if self.num_samples == 0: self._blocks = [ SignalBlock(np.zeros((self.num_streams, signal.shape[1]), np.complex128), 0) ] # Check if all the signal attributes match for prop in self.kwargs.items(): if getattr(signal, prop[0], prop[1]) != prop[1]: raise ValueError(f"Signal attribute {prop[0]} does not match") # Resample the signal added_blocks_resampled: Sequence[np.ndarray] if isinstance(signal, Signal): added_blocks_resampled = signal.resample(self.sampling_rate)._blocks else: added_blocks_resampled = [signal] # Append all blocks from the signal to self block for b in added_blocks_resampled: self._blocks[0] = SignalBlock( np.append(self._blocks[0], b, axis=0), self._blocks[0].offset ) # Update _num_streams if len(self._blocks) > 0: self._num_streams = self._blocks[0].shape[0]
[docs] def to_dense(self) -> DenseSignal: return self
[docs] class SparseSignal(Signal): """Sparse signal model class. HermesPy signal sparsification can be described as follows. Given M signal streams, N samples are recorded for each stream with some constant temporal sampling rate. Thus, a MxN complex matrix of samples can be constructed. If at some point streams do not contain any recorded/transmitted signal, then fully zeroed columns appear in the matrix. This signal model contains a list of SignalBlocks, each representing non-zero regions of the original samples matrix. Thus, regions with only zeros are avoided. Note, that SignalBlocks are sorted by their offset time and don't overlap.""" def __init__( self, samples: np.ndarray | Sequence[np.ndarray] | Sequence[SignalBlock], sampling_rate: float = 1.0, carrier_frequency: float = 0.0, noise_power: float = 0.0, delay: float = 0.0, offsets: List[int] = None, ) -> None: """Signal model initialization. Args: samples (numpy.ndarray | Sequence[SignalBlock]): A MxT matrix containing uniformly sampled base-band samples of the modeled signal. M is the number of individual streams, T the number of available samples. Note that you can pass here a 2D ndarray, a SignalBlock, a Sequence[np.ndarray] or a Sequence[SignalBlock]. Given Sequence[SignalBlock], concatenates all signal blocks into one, accounting for their offsets. Given Sequence[np.ndarray], concatenates them all into one matrix sequentially. sampling_rate (float): Sampling rate of the modeled signal in Hz (in the base-band). carrier_frequency (float, optional): Carrier-frequency of the modeled signal in the radio-frequency band in Hz. Zero by default. noise_power (float, optional): Power of the noise superimposed to this signal model. Zero by default. delay (float, optional): Delay of the signal in seconds. Zero by default. offsets (List[int], optional): If provided, must be of the same length as the samples argument. If samples argument is not an Sequence[SignalBlock], then offsets will be used to dislocate the blocks in the signal. """ # Initialize base classes HDFSerializable.__init__(self) self._blocks = [] # Initialize attributes self.sampling_rate = sampling_rate self.carrier_frequency = carrier_frequency self.delay = delay self.noise_power = noise_power self._samples_visualization = _SamplesVisualization(self) self._eye_visualization = _EyeVisualization(self) # Initialize blocks self.set_samples(samples, offsets)
[docs] @staticmethod def Create( samples: np.ndarray | Sequence[np.ndarray], sampling_rate: float = 1.0, carrier_frequency: float = 0.0, noise_power: float = 0.0, delay: float = 0.0, offsets: List[int] = None, ) -> SparseSignal: return SparseSignal(samples, sampling_rate, carrier_frequency, noise_power, delay, offsets)
@staticmethod def __from_dense(block: np.ndarray) -> List[SignalBlock]: """Sparsify given signal samples matrix.""" # Get block attributes offset = getattr(block, "offset", 0) # Boundary dimensional cases if block.ndim == 1: # a vector of a stream block = block.reshape((1, block.size)) # pragma: no cover if block.shape[1] == 0 or len(block.nonzero()) == 0: # an empty signal return [SignalBlock(block, offset)] # Find nonzero columns indices nonzero_cols_idx = np.sum(block, axis=0).nonzero()[ 0 ] # [3, 4, 5, 6, 12, 13, 14, 16, 17, ...] if len(nonzero_cols_idx) == 0: return [] # Calculate nonzero windows offsets and stops nz_wins_idx = np.ediff1d(nonzero_cols_idx) - 1 # [0, 0, 0, 5, 0, 0, 1, 0, ...] nz_wins_idx = np.array(nz_wins_idx.nonzero()) + 1 # [ 4, 7, ...] res_offsets = nonzero_cols_idx[nz_wins_idx] # [ 12, 16, ...] res_offsets = np.insert( res_offsets, 0, nonzero_cols_idx[0] ) # Add offset of the first window (3) # Calculate windows stops win_stops = nonzero_cols_idx[nz_wins_idx - 1] # [ 6, 14, ...] win_stops = np.append(win_stops, nonzero_cols_idx[-1]) # Add a stop for the last window win_stops += 1 # [ 7, 15, ...] # Cut the windows assert win_stops.shape == res_offsets.shape num_windows = win_stops.shape[0] res = [] for i in range(num_windows): res_samples = block[:, res_offsets[i] : win_stops[i]].astype(np.complex128) res_offset = offset + res_offsets[i] res.append(SignalBlock(res_samples, res_offset)) return res def __setitem__(self, key: Any, value: Any) -> None: # parse and validate key s00, s01, s02, s10, s11, s12, isboolmask, _, _ = self._parse_validate_itemkey(key) if s02 <= 0 or s12 <= 0: raise NotImplementedError("Only positive steps are implemented") if s12 != 1: raise NotImplementedError( "SparseSignal __setitem__ does not support sample stepping yet" ) if isboolmask: raise NotImplementedError("SparseSignal __setitem__ does not support boolean masks yet") num_streams = -((s01 - s00) // -s02) num_samples = -((s11 - s10) // -s12) # clamp the slices to the actual dimensions num_streams = min(self.num_streams, num_streams) num_samples = min(self.num_samples, num_samples) s01 = min(self.num_streams, s01) s11 = min(self.num_samples, s11) # If insertion happens entirely before the first block if s11 < self._blocks[0].offset: # then create new blocks and insert them into the model if not isinstance(value, np.ndarray): value = np.complex128(value) if value == 0.0 + 0.0j: return bs_new = [SignalBlock(np.full((num_streams, num_samples), value, np.complex128), s10)] else: value = value.reshape((num_streams, num_samples)) bs_new = self.__from_dense(SignalBlock(value, s10)) self._blocks = bs_new + self._blocks return # Get sliced streames indices stream_idx = np.arange(s00, s01, s02) # Do nothing if no streams are affected if stream_idx.size == 0: return # parse and validate value samples if not isinstance(value, np.ndarray): # If value is a scalar value = np.complex128(value) bs_new = ( [] if value == 0.0 + 0.0j else [SignalBlock(np.full((num_streams, num_samples), value, np.complex128), s10)] ) else: # else value is a samples matrix if value.ndim == 1: value = value.reshape((num_streams, num_samples)) bs_new = self.__from_dense(SignalBlock(value, s10)) if len(bs_new) == 0: return # pragma: no cover if bs_new[-1].end - bs_new[0].offset > num_samples or bs_new[0].shape[0] != num_streams: raise ValueError("Shape mismatch") # Find blocks that will be overwritten or modified. b_start, b_stop = self._find_affected_blocks(s10, s11) # Example: # s10 s11 # v v # xxxxxxxx0000000xxxx000xxxxxxxxx -- self signal # yyyyy00yy0000yyyyy0000 -- value # xxxxxyyyyy00yy0000yyyyy0000xxxx -- result # ^ ^ -- remaining samples from the first affected block # ^ value samples ^ # ^ ^ -- remaining samples from the last affected block # Init the resulting blocks # Here the resulting blocks list is divided # onto 3 parts as on the ascii example. # b_start and b_stop can be sliced partially and will be added to the lists right after. # value argument will be applied only to the middle blocks (_mid). blocks_new_beg = self._blocks[:b_start] blocks_new_mid = [b for b in self._blocks[b_start + 1 : b_stop]] blocks_new_end = self._blocks[b_stop + 1 :] # Cut the first affected block # Example: # s10 s10 # v v # xxxxxxxxxxxx00000 -> xxxxxxxxxxxx00000 # [ b_start ] [1st ][2nd ] b = self._blocks[b_start] cut_col = max(s10 - b.offset, 0) # max is for s10 < self._blocks[0].offset b_l = b[:, :cut_col] b_r = b[:, cut_col:] b_r.offset += cut_col if b_l.size != 0: blocks_new_beg.append(b_l) if b_r.size != 0: blocks_new_mid = [b_r] + blocks_new_mid # Cut the last affected block if b_start != b_stop: b = self._blocks[b_stop] cut_col = s11 - b.offset b_l = b[:, :cut_col] b_r = b[:, cut_col:] b_r.offset += cut_col if b_l.size != 0: blocks_new_mid.append(b_l) if b_r.size != 0: blocks_new_end = [b_r] + blocks_new_end # If only some of the streams are being replaced, # then block merging must be performed. if stream_idx.size != self.num_streams: b_offs, b_stops = self._get_blocks_union(blocks_new_mid, bs_new) # Asseble the new blocks incoming_signal = SparseSignal(bs_new, **self.kwargs) blocks_new_mid_new = [] for i in range(b_offs.size): b_off = b_offs[i] b_stop = b_stops[i] b_new = self.getitem((slice(None, None), slice(b_off, b_stop))) b_new[stream_idx, :] = incoming_signal.getitem( (slice(None, None), slice(b_off, min(b_stop, s11))) ) blocks_new_mid_new.append(SignalBlock(b_new, b_off)) blocks_new_mid = blocks_new_mid_new # Otherwise, the middle blocks are being simply replaced with the new ones else: blocks_new_mid = bs_new # Insert the result into this sparse signal model self._blocks = blocks_new_beg + blocks_new_mid + blocks_new_end # merge new beginning blocks if needed if len(blocks_new_beg) != 0: b2_idx = len(blocks_new_beg) b1 = self._blocks[b2_idx - 1] b2 = self._blocks[b2_idx] if b1.end == b2.offset: self._blocks[b2_idx - 1] = b1.append_samples(b2) self._blocks.pop(b2_idx) # merge new ending blocks if needed if len(blocks_new_end) != 0: b2_idx = -len(blocks_new_end) b1 = self._blocks[b2_idx - 1] b2 = self._blocks[b2_idx] if b1.end == b2.offset: self._blocks[b2_idx - 1] = b1.append_samples(b2) self._blocks.pop(b2_idx)
[docs] def set_samples( self, samples: np.ndarray | Sequence[np.ndarray] | Sequence[SignalBlock], offsets: List[int] | None = None, ) -> None: """Sets given samples into this sparse signal model. Usage: samples (numpy.ndarray): In this case samples array (a 2D complex matrix) will be divided onto several non-zero blocks. samples (Sequence[np.ndarray]): In this case all entries (2D complex matrices) will be concatenated among the samples axis and sparsified. samples (Sequence[np.ndarray]), offsets(Sequence[integer]): In this case SignalBlocks will be constructed directly out of the samples entries, avoiding sparsification. Note that number of offsets entries must equal to the number of samples entries. Offsets must be sorted in an increasing order and samples entries must not overlap (e.g. `offsets[i] + samples[i].shape[1] < offsets[i+1]`). samples (SignalBlock): In this case given SignalBlock will be resampled and sparcified. The block's offset property will be preserved. Consider setting it to zero beforehand (`samples.offset= 0`). samples (Sequence[SignalBlock]): In this case each entry will be resampled and stored in the model, avoiding sparsification. Note that the entries must be sorted by an offset in an increasing order and must not overlap (e.g. `samples[i].offset+ samples[i].num_samples < samples[i+1].off`). samples (List[SignalBlock]), offsets(Sequence[integer]): In this case the same actions will be taken as in the previous case, but given offsets will be set into the samples entries before resampling. Note that number of offsets entries must equal to the number of samples entries. """ super().set_samples(samples, offsets) # Sparsify the blocks new_blocks = [] for b in self._blocks: for b_new in self.__from_dense(b): if b_new.size != 0: new_blocks.append(b_new) self._blocks = new_blocks
@property def title(self) -> str: return "Sparse Signal Model"
[docs] @staticmethod def Empty( sampling_rate: float, num_streams: int = 0, num_samples: int = 0, **kwargs ) -> SparseSignal: res = SparseSignal( np.empty((num_streams, num_samples), np.complex128), sampling_rate, **kwargs ) res._num_streams = num_streams return res
[docs] def append_samples(self, signal: Signal | np.ndarray) -> None: # Check if number of streams match if self.num_streams != signal.shape[0]: raise ValueError("Number of streams do not match") # Resample the incoming signal _signal: Signal | list[np.ndarray] if isinstance(signal, Signal): _signal = signal.resample(self.sampling_rate) else: _signal = [signal] # Check if all the signal attributes match for prop in self.kwargs.items(): if getattr(_signal, prop[0], prop[1]) != prop[1]: raise ValueError(f"Signal attribute {prop[0]} does not match") # Sparsify all blocks in the incoming signal # and add them to this model num_blocks_old = len(self._blocks) self_samples_stop = self._blocks[-1].end if len(self._blocks) != 0 else 0 for b in _signal: for b_ in self.__from_dense(b): self._blocks.append(b_) b_.offset += self_samples_stop # Merge the last old and the first new blocks if no gap exists between them if len(self._blocks) > num_blocks_old: b1 = self._blocks[num_blocks_old - 1] b2 = self._blocks[num_blocks_old] if b2.offset == b1.end: self._blocks[num_blocks_old - 1] = b1.append_samples(b2) self._blocks.pop(num_blocks_old)
[docs] def append_streams(self, signal: Signal | np.ndarray) -> None: # Resample the incoming signal _signal: Signal | list[np.ndarray] if isinstance(signal, Signal): _signal = signal.resample(self.sampling_rate) else: _signal = [signal] # Check if all the signal attributes match for prop in self.kwargs.items(): if getattr(_signal, prop[0], prop[1]) != prop[1]: raise ValueError(f"Signal attribute {prop[0]} does not match") # Sparsify all blocks in the incoming signal # and add them to this model blocks_incoming = [] for b in _signal: for b_ in self.__from_dense(b): blocks_incoming.append(b_) # Create new resulting blocks num_streams = self.num_streams + signal.shape[0] b_offs, b_stops = self._get_blocks_union(self._blocks, blocks_incoming) is_signal_oftype_signal = issubclass(signal.__class__, Signal) blocks_new = [] for i in range(b_offs.size): b_new = np.zeros((num_streams, b_stops[i] - b_offs[i]), np.complex128) b1 = self.getitem((slice(None, None), slice(b_offs[i], b_stops[i]))) if is_signal_oftype_signal: b2 = signal.getitem((slice(None, None), slice(b_offs[i], b_stops[i]))) # type: ignore else: b2 = signal[:, b_offs[i] : b_stops[i]] # type: ignore b_new = np.concatenate((b1, b2), 0) blocks_new.append(SignalBlock(b_new, b_offs[i])) # Set the result into the model self._blocks = blocks_new self._num_streams = num_streams