Source code for hermespy.fec.scrambler

# -*- coding: utf-8 -*-
"""
==========
Scrambling
==========

Scrambling as a channel coding step masks transmitted bits by a pseudo-random sequence
known at both receiver and transmitter in order to prevent long sequences of identical
bits.
Therefore, most scrambling coding operations do not introduce redundancy to the scrambled bit blocks,
i.e. the code rate is usually :math:`R = 1`.
"""

from __future__ import annotations
from collections import deque
from typing import Optional

import numpy as np

from hermespy.core import Serializable
from .coding import Encoder

__author__ = "Jan Adler"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Jan Adler", "Tobias Kronauer"]
__license__ = "AGPLv3"
__version__ = "1.4.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"


[docs] class PseudoRandomGenerator: """A generator for pseudo-random bit sequences. Generators with identical initialization will output identical random sequences. Implements pseudo-random generator as described in the 3GPP standard for :footcite:t:`2018:ts138211`. """ __queue_x1: deque __queue_x2: deque __initial_queue_x1: deque __initial_queue_x2: deque def __init__(self, init_sequence: np.ndarray, offset: int = 1600) -> None: """ Args: init_sequence(numpy.ndarray): A sequence of 31 bits initializing the generator. offset(int): Gold sequence parameter controlling the sequence offset. """ # The required sequence buffer length is inferred from the length of the init sequence m = init_sequence.shape[0] # Make sure the buffer / init sequence is at least 4 bits lon if m < 4: raise ValueError("The init sequence must contain at least 4 bits") # Init the first fifo queue as [1 0 0 ... 0] self.__queue_x1 = deque(np.zeros(m, dtype=np.int8), m) self.__queue_x1.appendleft(1) # Init the second fifo queue by the provided init sequence self.__queue_x2 = deque(init_sequence, m) # Fast-forward the queues to compensate for the offset for _ in range(offset - m): self.__forward_x1() self.__forward_x2() # Store the initial queues in order to reset the rng to n = 0 self.__initial_queue_x1 = self.__queue_x1.copy() self.__initial_queue_x2 = self.__queue_x2.copy()
[docs] def generate(self) -> int: """Generate the next bit within the pseudo-random sequence. Returns: int: The generated bit. """ return (self.__forward_x1() + self.__forward_x2()) % 2
[docs] def generate_sequence(self, length: int) -> np.ndarray: """Generate a new sequence of random numbers. Args: length(int): Length of the sequence to be generated. Returns: A numpy array of dimension length containing a sequence of pseudo-random bits. """ sequence = np.empty(length, dtype=int) for n in range(length): sequence[n] = self.generate() return sequence
[docs] def reset(self) -> None: """Resets the gernator to its default state. This implies reverting the queues back to their original state (at rng position n = 0). """ self.__queue_x1 = self.__initial_queue_x1.copy() self.__queue_x2 = self.__initial_queue_x2.copy()
def __forward_x1(self) -> int: x1 = (self.__queue_x1[-3] + self.__queue_x1[0]) % 2 self.__queue_x1.append(x1) return x1 def __forward_x2(self) -> int: x2 = ( self.__queue_x2[-3] + self.__queue_x2[-2] + self.__queue_x2[-1] + self.__queue_x1[0] ) % 2 self.__queue_x2.append(x2) return x2
[docs] class Scrambler3GPP(Encoder, Serializable): """Scrambler channel coding in the physical up- and down-link standard of the 3GPP. See section 7.3.1.1 of the respective technical standard :footcite:t:`2018:ts138211` for details. """ yaml_tag: str = "SCRAMBLER_3GPP" __transmit_rng: PseudoRandomGenerator __receive_rng: PseudoRandomGenerator __default_seed = np.array([0, 1, 0, 1, 1, 0, 1], int) def __init__(self, seed: Optional[np.ndarray] = None) -> None: """ Args: seed (numpy.ndarray, optional): Seed used to initialize the scrambling sequence generation. Must contain a sequence of bits. """ # Init base class (Encoder) Encoder.__init__(self) # Initialize the pseudo random number generator seed = self.__default_seed.copy() if seed is None else seed self.__transmit_rng = PseudoRandomGenerator(seed) self.__receive_rng = PseudoRandomGenerator(seed)
[docs] def encode(self, data: np.ndarray) -> np.ndarray: codeword = self.__transmit_rng.generate_sequence(data.shape[0]) code = (data + codeword) % 2 return code
[docs] def decode(self, code: np.ndarray) -> np.ndarray: codeword = self.__receive_rng.generate_sequence(code.shape[0]) data = (code + codeword) % 2 return data
@property def bit_block_size(self) -> int: return 1 @property def code_block_size(self) -> int: return 1
[docs] class Scrambler80211a(Encoder, Serializable): """Scrambler channel coding in the the `802.11a` standard. Refer to section 17.3.5.4 of :footcite:t:`80211a:1999` for further details. """ yaml_tag: str = "SCRAMBLER_80211A" __seed: np.ndarray __queue: deque __default_seed: np.ndarray = np.array([0, 1, 0, 1, 1, 0, 1], dtype=int) def __init__(self, seed: Optional[np.ndarray] = None) -> None: """ Args: seed (numpy.ndarray, optional): Seed used to initialize the scrambling sequence generation. Must contain a sequence of 7 bits. """ # Init base class (Encoder) Encoder.__init__(self) # The default seed is all zeros self.__seed = self.__default_seed.copy() if seed is None else seed self.__queue = deque(self.__seed, 7) @property def seed(self) -> np.ndarray: """Random sequence generator seed. Resets the internal register queue used to generate the scrambling sequence. Returns: np.ndarray: Numpy vector containing the generator seed. Must be an array of dimension 7 containing only soft bits. Raises: ValueError: If `seed` does not contain exactly 7 bits. """ return self.__seed @seed.setter def seed(self, value: np.ndarray) -> None: if value.shape[0] != 7: raise ValueError("The seed must contain exactly 7 bit") for bit in value: if bit != 0 and bit != 1: raise ValueError("Only bits (i.e. 0 or 1) represent valid seed fields") self.__seed = value self.__queue = deque(self.__seed, 7)
[docs] def encode(self, data: np.ndarray) -> np.ndarray: code = np.array([self.__scramble_bit(bit) for bit in data], dtype=int) return code
[docs] def decode(self, code: np.ndarray) -> np.ndarray: data = np.array([self.__scramble_bit(bit) for bit in code], dtype=int) return data
def __forward_code_bit(self) -> int: """Generate the next bit in the scrambling sequence. The sequence depends on the configured seed. Returns: int: The next bit within the scrambling sequence """ code_bit = (self.__queue[3] + self.__queue[6]) % 2 self.__queue.appendleft(code_bit) return code_bit def __scramble_bit(self, bit: int) -> int: """Scramble a given bit. Args: bit(int): The bit to be scrambled. Returns: int: The scrambled bit.""" return (self.__forward_code_bit() + bit) % 2 @property def bit_block_size(self) -> int: return 1 @property def code_block_size(self) -> int: return 1