Source code for hermespy.modem.precoding.space_time_block_coding

# -*- coding: utf-8 -*-

from __future__ import annotations
from fractions import Fraction

import numpy as np
from sparse import SparseArray  # type: ignore

from hermespy.core import Serializable
from ..symbols import StatedSymbols
from .symbol_precoding import SymbolPrecoder

__author__ = "Tobias Kronauer"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Tobias Kronauer", "Jan Adler", "Egor Achkasov"]
__license__ = "AGPLv3"
__version__ = "1.3.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"


[docs] class Alamouti(SymbolPrecoder, Serializable): """Alamouti precoder distributing symbols in space and time. Support for 2 transmit antennas only. Refer to :footcite:t:`1998:alamouti` for further information. """ yaml_tag = "ALAMOUTI"
[docs] def encode(self, symbols: StatedSymbols) -> StatedSymbols: """Encode data into multiple antennas with space-time/frequency block codes. Args: symbols (StatedSymbols): Input signal featuring :math:`K` blocks. Returns: Encoded data with size :math:`2 \\times K` symbols Raises: ValueError: If more than a single symbol stream is provided. RuntimeError: If the number of transmit antennas is not two. ValueError: If the number of data symbols is not even. """ if symbols.num_streams != 1: raise ValueError("Space-Time block codings require a single symbol input stream") num_tx_streams = self.required_num_output_streams input_data = symbols.raw[0, :, :] # 2x2 MIMO Alamouti code if num_tx_streams != 2: raise RuntimeError( f"Alamouti encoding requires two transmit antennas ({num_tx_streams} requested)" ) if symbols.num_blocks % 2 != 0: raise ValueError("Alamouti encoding must contain an even amount of data symbols blocks") output = np.empty((2, symbols.num_blocks, symbols.num_symbols), dtype=np.complex_) output[0, :, :] = input_data output[1, 0::2, :] = -input_data[1::2, :].conj() output[1, 1::2, :] = input_data[0::2, :].conj() state = np.repeat(symbols.states, num_tx_streams, axis=0) return StatedSymbols(output, state)
[docs] def decode(self, symbols: StatedSymbols) -> StatedSymbols: """Decode data for STBC with 2 antenna streams Received signal with equal noise power is assumed, the decoded signal has same noise level as input. Args: symbols (StatedSymbols): Input signal with :math:`N \\times K` symbol blocks. Returns: Decoded data with size :math:`N \\times K` """ if symbols.num_blocks % 2 != 0: raise ValueError("Alamouti decoding must contain an even amount of data symbols blocks") channel_state = symbols.states[:, :2, 0::2, :] channel_state = ( channel_state.todense() if isinstance(channel_state, SparseArray) else channel_state ) weight_norms = np.sum(np.abs(channel_state) ** 2, axis=1, keepdims=False) decoded_symbols = np.empty( (symbols.num_streams, symbols.num_blocks, symbols.num_symbols), dtype=complex ) decoded_symbols[:, 0::2, :] = ( channel_state[:, 0, ::].conj() * symbols.raw[:, 0::2, :] + channel_state[:, 1, ::] * symbols.raw[:, 1::2, :].conj() ) / weight_norms decoded_symbols[:, 1::2, :] = ( channel_state[:, 0, ::].conj() * symbols.raw[:, 1::2, :] - channel_state[:, 1, ::] * symbols.raw[:, 0::2, :].conj() ) / weight_norms return StatedSymbols( decoded_symbols, np.ones( (symbols.num_streams, 1, symbols.num_blocks, symbols.num_symbols), dtype=complex ), )
@property def num_input_streams(self) -> int: # Alamouti coding requires a single symbol input stream return 1 @property def num_output_streams(self) -> int: # Alamouti coding will always produce 2 symbol output streams return 2
[docs] class Ganesan(SymbolPrecoder, Serializable): """Girish Ganesan and Petre Stoica general precoder distributing symbols in space and time. Supports 4 transmit antennas. Features a :math:`\\frac{3}{4}` symbol rate. Refer to :footcite:t:`2001:ganesan` for further information. """ yaml_tag = "GANESAN"
[docs] def encode(self, symbols: StatedSymbols) -> StatedSymbols: """Encode data into multiple antennas with space-time/frequency block codes. Note that Ganesan schema's symbol rate is :math:`\\frac{3}{4}` so the encoding process increases the number of blocks by :math:`\\frac{4}{3}`. Args: symbols (StatedSymbols): Input signal featuring :math:`K` blocks. Returns: Encoded data with size :math:`\\frac{4}{3} \\times K` symbol blocks. Thus num_blocks is changed to num_blocks / 3 * 4. Returned channel states are initialized with ones (np.ones is used). Raises: ValueError: If more than a single symbol stream is provided. RuntimeError: If the number of transmit antennas is not four. ValueError: If the number of data symbols blocks is not divisable by three. """ if symbols.num_streams != 1: raise ValueError("Space-Time block codings require a single symbol input stream") num_tx_streams = self.required_num_output_streams input_data = symbols.raw[0, :, :] if num_tx_streams != 4: raise RuntimeError( f"Ganesan encoding requires 4 transmit antennas ({num_tx_streams} requested)" ) if symbols.num_blocks % 3 != 0: raise ValueError("Number of blocks must be divisable by 3.") # Change symbol block amount because of the 3/4 symbol rate. output = np.empty((4, symbols.num_blocks // 3 * 4, symbols.num_symbols), dtype=np.complex_) zero = np.zeros((symbols.num_blocks // 3, symbols.num_symbols), dtype=np.complex_) # Encode data explicitly element-wise. # Notice that matrix Z (Eq. 41) is m by N in the paper, # where m = num Tx, and N = num symbol periods, # so each column is a symbol period and each row is TX # Note that input_data[i::3, :] relates to symbol s_{i-1} in the paper. # Tx 1 output[0, 0::4, :] = input_data[0::3, :] output[0, 1::4, :] = zero output[0, 2::4, :] = input_data[1::3, :] output[0, 3::4, :] = -input_data[2::3, :] # Tx 2 output[1, 0::4, :] = zero output[1, 1::4, :] = input_data[0::3, :] output[1, 2::4, :] = input_data[2::3, :].conj() output[1, 3::4, :] = input_data[1::3, :].conj() # Tx 3 output[2, 0::4, :] = -input_data[1::3, :].conj() output[2, 1::4, :] = -input_data[2::3, :] output[2, 2::4, :] = input_data[0::3, :].conj() output[2, 3::4, :] = zero # Tx 4 output[3, 0::4, :] = input_data[2::3, :].conj() output[3, 1::4, :] = -input_data[1::3, :] output[3, 2::4, :] = zero output[3, 3::4, :] = input_data[0::3, :].conj() # Cast the result to StatedSymbols st = symbols.states st = np.ones((4, st.shape[1], st.shape[2] // 3 * 4, st.shape[3])) return StatedSymbols(output, st)
[docs] def decode(self, symbols: StatedSymbols) -> StatedSymbols: """Decode data for STBC with 4 antenna streams Note that Ganesan schema's symbol rate is :math:`\\frac{3}{4}` so the decoding process decreases the number of blocks by :math:`\\frac{3}{4}`. Args: symbols (StatedSymbols): Input signal with :math:`4 \\times N` symbol blocks. Returns: Decoded data with size :math:`3 \\times N` Returned channel states are initialized with ones (np.ones is used). """ # check the number of blocks (we expect them to be divisable by 4) if symbols.num_blocks % 4 != 0: raise ValueError( "Ganesan decoding must be given an amount of data symbols blocks that is divisable by 4" ) # check number of Tx (must be 4) if symbols.num_transmit_streams != 4: raise ValueError( f"Ganesan decoding must be given 4 transmit antennas ({symbols.num_transmit_streams} were given)" ) states = symbols.dense_states() # Init the decoded symbols ndarray. Notice that num_blocks is reduced because of the 3/4 symbol rate. num_rx = symbols.num_streams decoded_symbols = np.empty( (num_rx, symbols.num_blocks // 4 * 3, symbols.num_symbols), dtype=np.complex_ ) # split the r vector onto real and imag vectors and concatenate them b = symbols.raw b = np.concatenate((b.real, b.imag), axis=1) # Let each Rx antenna receive 4 signals over 4 time moments (=1 symbol period). # Let R be a vector of 4 received signals by a Rx antenna # Let A be a matrix of channel states of size of 4x4 (4 Tx to 4 symbols in a symbol period): # R = A@s, where # R = {r1, r2, r3, r4} # s = {s1, s2, s3, 0} # Split each variable into real and imag parts, expanding the system # R' = A' @ s', where # R' = {r1.real, r2.real, r3.real, r4.real, r1.imag, r2.imag, r3.imag, r4.imag}, where # s' = {s1.real, s2.real, s3.real, s1.imag, s2.imag, s3.imag} # Then matrix A can be constructed with the following sings and index matrices signs_matrix_real = np.array( [[1, -1, 1, -1, -1, 1], [1, -1, -1, -1, 1, 1], [1, 1, 1, 1, -1, 1], [1, 1, -1, 1, 1, 1]] ) signs_matrix_imag = signs_matrix_real.copy() signs_matrix_imag[:, 3:] *= -1 signs_matrix = np.concatenate((signs_matrix_real, signs_matrix_imag), axis=0) index_matrix = np.array([[0, 2, 3], [1, 3, 2], [2, 0, 1], [3, 1, 0]]) # Init result(decoded_symbols), matrix A(an) and estimator with lhs(b) of the linear system decoded_symbols = np.empty( (num_rx, symbols.num_blocks * 3 // 4, symbols.num_symbols), dtype=np.complex_ ) an = np.empty((num_rx, 6, 8, symbols.num_symbols), dtype=np.float_) estimator = np.empty((symbols.num_symbols, symbols.num_streams, 6, 8), dtype=np.float_) b = np.empty((num_rx, 8, symbols.num_symbols), dtype=np.float_) # Init einsum paths to optimize einsum in the future an_path = np.einsum_path("ikjl,jk->lijk", an, signs_matrix, optimize="optimal")[0] estimation_path = np.einsum_path("ijkl,jli->jki", estimator, b, optimize="optimal")[0] # For each symbol period (which is 4 blocks) decode 3 encoded symbol blocks for n in range(symbols.num_blocks // 4): # Assemble matrix A' for n_ in range(4): an[:, 3:, n_ + 4, :] = an[:, :3, n_, :] = states.real[ :, index_matrix[n_], n * 4 + n_, : ] an[:, :3, n_ + 4, :] = an[:, 3:, n_, :] = states.imag[ :, index_matrix[n_], n * 4 + n_, : ] # Calculate estimator such that estimator @ R' = s' # this einsum applies the signs matrix to A' and transposes it estimator = np.linalg.pinv( np.einsum("ikjl,jk->lijk", an, signs_matrix, optimize=an_path) ) # Init R' for this symbol period received_symbols_blocks = symbols.raw[:, n * 4 : n * 4 + 4, :] b = np.concatenate((received_symbols_blocks.real, received_symbols_blocks.imag), axis=1) # Solve the system and assemble extended results from 6 floats back to 3 complex estimated_split_symbols = np.einsum( "ijkl,jli->jki", estimator, b, optimize=estimation_path ) decoded_symbols[:, n * 3 : n * 3 + 3, :] = ( estimated_split_symbols[:, :3, :] + 1j * estimated_split_symbols[:, 3:, :] ) # Construct ideal channel states to cast result to StatedSymbols ideal_states = np.ones((num_rx, 1, decoded_symbols.shape[1], decoded_symbols.shape[2])) return StatedSymbols(decoded_symbols, ideal_states)
@property def num_input_streams(self) -> int: return 1 @property def num_output_streams(self) -> int: return 4 @property def rate(self) -> Fraction: return Fraction(3, 4)