Source code for hermespy.modem.waveforms.orthogonal.ocdm

# -*- coding: utf-8 -*-

from __future__ import annotations
from typing import Sequence

import numpy as np

from ...waveform import PilotSymbolSequence
from .waveform import GridResource, GridSection, OrthogonalWaveform, PilotSection

__author__ = "Jan Adler"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Jan Adler"]
__license__ = "AGPLv3"
__version__ = "1.4.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"


[docs] class OCDMWaveform(OrthogonalWaveform): """Orthogonal Chirp Division Multiplexing waveform.""" __bandwidth: float def __init__( self, bandwidth: float, num_subcarriers: int, grid_resources: Sequence[GridResource], grid_structure: Sequence[GridSection], pilot_section: PilotSection | None = None, pilot_sequence: PilotSymbolSequence | None = None, repeat_pilot_sequence: bool = True, **kwargs, ) -> None: # Initialize base class OrthogonalWaveform.__init__( self, num_subcarriers, grid_resources, grid_structure, pilot_section, pilot_sequence, repeat_pilot_sequence, **kwargs, ) # Initialize class attributes self.bandwidth = bandwidth @property def __DFnT(self) -> np.ndarray: """Discrete Fresenl Transform matrix.""" N = self.num_subcarriers correction = 0.0 if N % 2 == 0 else 0.5 # Discrete Fresnel Transform transform = np.zeros((N, N * self.oversampling_factor), dtype=np.complex128) for m, n in np.ndindex(N, N * self.oversampling_factor): transform[m, n] = N**-0.5 * np.exp( 1j * np.pi * ((m + correction - n / self.oversampling_factor) ** 2 / N - 0.25) ) return transform @property def bandwidth(self) -> float: return self.__bandwidth @bandwidth.setter def bandwidth(self, value: float) -> None: if value <= 0.0: raise ValueError("Bandwidth must be gerater than zero") self.__bandwidth = value @property def sampling_rate(self) -> float: return self.bandwidth * self.oversampling_factor def _forward_transformation(self, symbol_grid: np.ndarray) -> np.ndarray: return symbol_grid @ self.__DFnT def _backward_transformation(self, sample_sections: np.ndarray) -> np.ndarray: return ( sample_sections @ self.__DFnT[:, : sample_sections.shape[-1]].T.conj() / self.oversampling_factor ) def _correct_sample_offset(self, symbol_subgrid: np.ndarray, sample_offset: int) -> np.ndarray: # This is a stub for now return symbol_subgrid # pragma: no cover