Source code for hermespy.modem.waveforms.orthogonal.otfs
# -*- coding: utf-8 -*-
from __future__ import annotations
import numpy as np
from scipy.fft import fft, ifft
from .ofdm import OFDMWaveform
__author__ = "Jan Adler"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Jan Adler"]
__license__ = "AGPLv3"
__version__ = "1.4.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"
[docs]
class OTFSWaveform(OFDMWaveform):
"""Orthogonal Time Frequency Space (OTFS) waveform."""
def _forward_transformation(self, symbol_grid: np.ndarray) -> np.ndarray:
# Initial step: ISFFT
delay_doppler_symbols = fft(ifft(symbol_grid, axis=-1, norm="ortho"), axis=-2, norm="ortho")
# Second step: Heisenberg transform, i.e. the regular OFDM treatment
sample_sections = OFDMWaveform._forward_transformation(self, delay_doppler_symbols)
return sample_sections
def _backward_transformation(
self, sample_sections: np.ndarray, normalize: bool = True
) -> np.ndarray:
# Initial step: Inverse Heisenberg transform, i.e. the regular OFDM treatment
delay_doppler_symbols = OFDMWaveform._backward_transformation(
self, sample_sections, normalize
)
# Second step: SFFT
symbol_grid = ifft(fft(delay_doppler_symbols, axis=-1, norm="ortho"), axis=-2, norm="ortho")
# Normalize the symbol grid
if normalize:
symbol_grid /= np.sqrt(np.prod(symbol_grid.shape[:-2]))
return symbol_grid