Source code for hermespy.modem.waveforms.orthogonal.otfs

# -*- coding: utf-8 -*-

from __future__ import annotations

import numpy as np
from scipy.fft import fft, ifft

from .ofdm import OFDMWaveform

__author__ = "Jan Adler"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Jan Adler"]
__license__ = "AGPLv3"
__version__ = "1.4.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"


[docs] class OTFSWaveform(OFDMWaveform): """Orthogonal Time Frequency Space (OTFS) waveform.""" def _forward_transformation(self, symbol_grid: np.ndarray) -> np.ndarray: # Initial step: ISFFT delay_doppler_symbols = fft(ifft(symbol_grid, axis=-1, norm="ortho"), axis=-2, norm="ortho") # Second step: Heisenberg transform, i.e. the regular OFDM treatment sample_sections = OFDMWaveform._forward_transformation(self, delay_doppler_symbols) return sample_sections def _backward_transformation( self, sample_sections: np.ndarray, normalize: bool = True ) -> np.ndarray: # Initial step: Inverse Heisenberg transform, i.e. the regular OFDM treatment delay_doppler_symbols = OFDMWaveform._backward_transformation( self, sample_sections, normalize ) # Second step: SFFT symbol_grid = ifft(fft(delay_doppler_symbols, axis=-1, norm="ortho"), axis=-2, norm="ortho") # Normalize the symbol grid if normalize: symbol_grid /= np.sqrt(np.prod(symbol_grid.shape[:-2])) return symbol_grid