Source code for hermespy.channel.ideal

# -*- coding: utf-8 -*-

from __future__ import annotations
from typing import Set

import numpy as np
from h5py import Group

from .channel import (
    Channel,
    ChannelRealization,
    ChannelSample,
    LinkState,
    ChannelSampleHook,
    InterpolationMode,
)
from hermespy.core import ChannelStateInformation, ChannelStateFormat, SignalBlock

__author__ = "Jan Adler"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Andre Noll Barreto", "Tobias Kronauer", "Jan Adler"]
__license__ = "AGPLv3"
__version__ = "1.4.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"


[docs] class IdealChannelSample(ChannelSample): """Sample of an ideal channel realization. Generated by the :meth:`_sample<IdealChannelRealization._sample>` routine of :class:`IdealChannelRealization`. """ def __init__(self, gain: float, state: LinkState) -> None: """ Args: gain (float): Linear channel power factor. state (ChannelState): State of the channel at the time of sampling. """ # Initialize base class ChannelSample.__init__(self, state) # Initialize class attributes self.__gain = gain @property def expected_energy_scale(self) -> float: return self.__gain
[docs] def state( self, num_samples: int, max_num_taps: int, interpolation_mode: InterpolationMode = InterpolationMode.NEAREST, ) -> ChannelStateInformation: # MISO case if self.num_receive_antennas == 1: spatial_response = np.ones( (1, self.transmitter_state.antennas.num_transmit_antennas), dtype=np.complex128 ) # SIMO case elif self.num_transmit_antennas == 1: spatial_response = np.ones( (self.receiver_state.antennas.num_receive_antennas, 1), dtype=np.complex128 ) # MIMO case else: spatial_response = np.eye( self.num_receive_antennas, self.num_transmit_antennas, dtype=np.complex128 ) # Scale response by channel gain spatial_response *= np.sqrt(self.__gain) sampled_state = np.expand_dims( np.repeat(spatial_response[:, :, np.newaxis], num_samples, 2), axis=3 ) return ChannelStateInformation(ChannelStateFormat.IMPULSE_RESPONSE, sampled_state)
[docs] def _propagate(self, signal: SignalBlock, interpolation: InterpolationMode) -> SignalBlock: # Single antenna transmitter case if self.num_transmit_antennas == 1: propagated_samples = np.repeat(signal[[0], :], self.num_receive_antennas, axis=0) # Single antenna receiver case elif self.num_receive_antennas == 1: propagated_samples = np.sum(signal, axis=0, keepdims=True) # No receiving antenna case elif self.num_receive_antennas == 0: propagated_samples = np.empty((0, signal.num_samples), dtype=np.complex128) # MIMO case else: propagated_samples = signal[: self.num_receive_antennas] if self.num_transmit_antennas < self.num_receive_antennas: propagated_samples = np.append( propagated_samples, np.zeros( ( self.num_receive_antennas - self.num_transmit_antennas, signal.num_samples, ), dtype=np.complex128, ), axis=0, ) # Apply channel gain propagated_samples *= np.sqrt(self.__gain) return SignalBlock(propagated_samples, signal._offset)
[docs] class IdealChannelRealization(ChannelRealization[IdealChannelSample]): """Realization of an ideal channel. Generated by the :meth:`_realize()<IdealChannel._realize>` routine of :class:`IdealChannels<IdealChannel>`. """
[docs] def _sample(self, state: LinkState) -> IdealChannelSample: # Since the ideal channel is deterministic, this is just a pass-through return IdealChannelSample(self.gain, state)
def _reciprocal_sample( self, sample: IdealChannelSample, state: LinkState ) -> IdealChannelSample: return IdealChannelSample(self.gain, state)
[docs] def to_HDF(self, group: Group) -> None: group.attrs["gain"] = self.gain
[docs] @staticmethod def From_HDF( group: Group, sample_hooks: Set[ChannelSampleHook[IdealChannelSample]] ) -> IdealChannelRealization: return IdealChannelRealization(sample_hooks, group.attrs["gain"])
[docs] class IdealChannel(Channel[IdealChannelRealization, IdealChannelSample]): """An ideal distortion-less channel model.""" yaml_tag: str = "Channel"
[docs] def _realize(self) -> IdealChannelRealization: return IdealChannelRealization(self.sample_hooks, self.gain)
[docs] def recall_realization(self, group: Group) -> IdealChannelRealization: return IdealChannelRealization.From_HDF(group, self.sample_hooks)