Detection Probability Evaluator¶
- class DetectionProbEvaluator(radar)[source]¶
Bases:
Evaluator
,Serializable
Estimates the probability of detection for a given radar detector.
Assumes a successful detection if the
Radar's
reception
contains a non-empty point cloud. This is the case if the configuredRadarDetector
made a positive decision for any bin within the processedRadarCube
.A minimal example within the context of a
Simulation
evaluating the probability of detection for a single radar target illuminated by anFMCW
radar would be:1from hermespy.radar import Radar, FMCW, ThresholdDetector, DetectionProbEvaluator 2from hermespy.simulation import Simulation 3from hermespy.channel import SingleTargetRadarChannel 4 5# Create a new simulated scenario featuring a single device 6simulation = Simulation() 7device = simulation.new_device(carrier_frequency=60e9) 8 9# Configure the device to transmit and reveive radar waveforms 10radar = Radar(waveform=FMCW()) 11radar.detector = ThresholdDetector(.02, normalize=False) 12device.add_dsp(radar) 13 14# Create a new radar channel with a single illuminated target 15target = SingleTargetRadarChannel(1, 1., attenuate=True) 16simulation.scenario.set_channel(device, device, target) 17 18# Create a new detection probability evaluator 19simulation.add_evaluator(DetectionProbEvaluator(radar)) 20 21# Sweep over the target's RCS during the simulation 22simulation.new_dimension('radar_cross_section', [1, .8, .6, .4, .2, .1, 0], target) 23 24# Run the simulation 25result = simulation.run()
- Parameters:
radar (Radar) – Radar detector to be evaluated.
- evaluate()[source]¶
Evaluate the state of an investigated object.
Implements the process of extracting an arbitrary performance indicator, represented by the returned
Artifact
\(X_m\).Returns: Artifact \(X_m\) resulting from the evaluation.
- Return type:
- generate_result(grid, artifacts)[source]¶
Generates an evaluation result from the artifacts collected over the whole simulation grid.
- Parameters:
grid (Sequence[GridDimension]) – The Simulation grid.
artifacts (numpy.ndarray) – Numpy object array whose dimensions represent grid dimensions.
- Return type:
- Returns:
The evaluation result.
- class DetectionProbabilityEvaluation(evaluation)[source]¶
Bases:
EvaluationTemplate
[bool
,ScatterVisualization
]Evaluation of the probability of detection for a radar detector.
Represents a boolean indicator of whether a target was detected or not. Generated by the
DetectionProbEvaluator
’sevaluate()
method.- Parameters:
evaluation (ET) – The represented evaluation.
- class DetectionProbArtifact(artifact)[source]¶
Bases:
ArtifactTemplate
[bool
]Artifacto of the probability of detection for a radar detector.
Represents a boolean indicator of whether a target was detected or not. Generated by the
DetectionProbabilityEvaluation
’sartifact()
method.- Parameters:
artifact (AT) – Artifact value.