Source code for hermespy.modem.waveforms.orthogonal.ofdm

# -*- coding: utf-8 -*-

from __future__ import annotations
from math import ceil
from typing import List, Any, Set, Sequence

import numpy as np
from scipy.fft import fft, fftfreq, fftshift, ifft, ifftshift
from scipy.signal import find_peaks

from hermespy.core import Serializable
from ...waveform import Synchronization
from ...waveform_correlation_synchronization import CorrelationSynchronization
from .waveform import (
    GridResource,
    GridSection,
    OrthogonalWaveform,
    PilotSection,
    PilotSymbolSequence,
)

__author__ = "André Noll Barreto"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["André Noll Barreto", "Tobias Kronauer", "Jan Adler"]
__license__ = "AGPLv3"
__version__ = "1.4.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"


[docs] class OFDMWaveform(OrthogonalWaveform, Serializable): """Generic Orthogonal Frequency Division Multiplexing waveform description.""" yaml_tag: str = "OFDM" __subcarrier_spacing: float dc_suppression: bool @staticmethod def _arg_signature() -> Set[str]: return {"modulation_order"} # pragma: no cover def __init__( self, grid_resources: Sequence[GridResource], grid_structure: Sequence[GridSection], num_subcarriers: int = 1024, subcarrier_spacing: float = 1e3, dc_suppression: bool = True, pilot_section: PilotSection | None = None, pilot_sequence: PilotSymbolSequence | None = None, repeat_pilot_sequence: bool = True, **kwargs: Any, ) -> None: """ Args: grid_resources (Sequence[GridResource]): Frequency-domain resource section configurations. grid_structure (Sequence[GridSection]): Time-domain frame configuration. num_subcarriers (int, optional): Maximum number of assignable subcarriers. Unassigned subcarriers will be assumed to be zero. :math:`1024` by default. subcarrier_spacing (float, optional): Spacing between individual subcarriers in Hz. :math:`1~\\mathrm{kHz}` by default. num_subcarriers (int, optional): Maximum number of assignable subcarriers. Unassigned subcarriers will be assumed to be zero. :math:`1024` by default. dc_suppression (bool, optional): Suppress the direct current component during waveform generation. Enabled by default. pilot_section (PilotSection, optional): Pilot section preceding the frame's payload. If not specified, no dedicated pilot section will be generated. pilot_sequence (PilotSymbolSequence, optional): Sequence of symbols used for the pilot section and reference symbols within the frame. If not specified, pseudo-random sequences will be generated from the set of data symbols. **kwargs (Any): Waveform generator base class initialization parameters. Refer to :class:`CommunicationWaveform` for details. """ # Initialize the base class OrthogonalWaveform.__init__( self, num_subcarriers, grid_resources, grid_structure, pilot_section, pilot_sequence, repeat_pilot_sequence, **kwargs, ) # Initialize the OFDM specific attributes self.subcarrier_spacing = subcarrier_spacing self.dc_suppression = dc_suppression def _forward_transformation(self, symbol_grid: np.ndarray) -> np.ndarray: # Normalize the frequency-domain data symbols for unit power transmission normalized_symbols = symbol_grid / np.sqrt(self.num_subcarriers) # Zero-pad the grid to account for oversampling padded_symbol_grid = np.zeros( (normalized_symbols.shape[0], self.oversampling_factor * self.num_subcarriers), dtype=np.complex128, ) padding_start_idx = ( self.oversampling_factor * self.num_subcarriers ) // 2 - self.num_subcarriers // 2 padded_symbol_grid[:, padding_start_idx : self.num_subcarriers + padding_start_idx] = ( normalized_symbols ) # Shift in order to suppress the dc component # Note that for configurations without any oversampling the DC component will not be suppressed if self.dc_suppression: dc_index = int(0.5 * self.num_subcarriers * self.oversampling_factor) padded_symbol_grid[:, dc_index:] = np.roll(padded_symbol_grid[:, dc_index:], 1, axis=-1) # By convention, the length of each time slot is the inverse of the sub-carrier spacing sample_grid = ifft( ifftshift(padded_symbol_grid, axes=-1), self.num_subcarriers * self.oversampling_factor, axis=-1, norm="forward", ) return sample_grid def _backward_transformation( self, sample_sections: np.ndarray, normalize: bool = True ) -> np.ndarray: # Transform the time-domain resource signals to frequency-domain data symbols symbol_grid = fft( sample_sections, n=self.num_subcarriers * self.oversampling_factor, axis=-1, norm="backward", ) # Shift fft bins to the center symbol_grid = fftshift(symbol_grid, axes=-1) # Account for the DC suppression if self.dc_suppression: dc_index = int(0.5 * self.num_subcarriers * self.oversampling_factor) symbol_grid[..., dc_index:] = np.roll(symbol_grid[..., dc_index:], -1, axis=-1) # Remove the zero padding due to the oversampling from the symbol grid padding_start_idx = ( self.oversampling_factor * self.num_subcarriers ) // 2 - self.num_subcarriers // 2 original_symbol_grid = symbol_grid[ ..., padding_start_idx : self.num_subcarriers + padding_start_idx ] # Normalize the frequency-domain data symbols for unit power reception if normalize: original_symbol_grid *= (self.num_subcarriers) ** -0.5 / self.oversampling_factor return original_symbol_grid def _correct_sample_offset(self, symbol_subgrid: np.ndarray, sample_offset: int) -> np.ndarray: frame_start_idx = ( self.oversampling_factor * self.num_subcarriers ) // 2 - self.num_subcarriers // 2 freqs = fftshift(fftfreq(self.oversampling_factor * self.num_subcarriers))[ frame_start_idx : frame_start_idx + self.num_subcarriers ] if self.dc_suppression: dc_index = int(0.5 * symbol_subgrid.shape[1]) freqs[dc_index:] = np.roll(freqs[dc_index:], -1) return symbol_subgrid * np.exp(2j * np.pi * freqs * sample_offset) @property def subcarrier_spacing(self) -> float: """Subcarrier spacing between frames. Returns: float: Spacing in Hz. """ return self.__subcarrier_spacing @subcarrier_spacing.setter def subcarrier_spacing(self, spacing: float) -> None: """Modify the subcarrier spacing between frames. Args: spacing (float): New spacing in Hz. Raises: ValueError: If `spacing` is smaller or equal to zero. """ if spacing <= 0.0: raise ValueError("Subcarrier spacing must be greater than zero") self.__subcarrier_spacing = spacing @property def samples_per_frame(self) -> int: num = 0 for section in self.grid_structure: num += section.num_samples if self.pilot_section: num += self.pilot_section.num_samples return num @property def bandwidth(self) -> float: # OFDM bandwidth currently is identical to the number of subcarriers times the subcarrier spacing b = self.num_subcarriers * self.subcarrier_spacing return b @property def sampling_rate(self) -> float: return self.oversampling_factor * self.subcarrier_spacing * self.num_subcarriers
[docs] class SchmidlCoxPilotSection(PilotSection[OFDMWaveform]): """Pilot Symbol Section of the Schmidl Cox Algorithm. Refer to :footcite:t:`1997:schmidl` for a detailed description. """ yaml_tag = "SchmidlCoxPilot" """YAML serialization tag""" def _pilot_sequence(self, num_symbols: int = None) -> np.ndarray: # The schmidl-cox pilot sequence is zero-stuffed in frequency domain stuffed_pilot_sequence = np.zeros(self.wave.num_subcarriers, dtype=complex) stuffed_pilot_sequence[::2] = PilotSection._pilot_sequence( self, ceil(0.5 * self.wave.num_subcarriers) ) if self.wave.dc_suppression: dc_index = int(0.5 * self.wave.num_subcarriers) stuffed_pilot_sequence[:dc_index] = np.roll(stuffed_pilot_sequence[:dc_index], 1) return stuffed_pilot_sequence
class OFDMSynchronization(Synchronization[OFDMWaveform]): """Synchronization Routine for OFDM Waveforms.""" ... # pragma: no cover class OFDMCorrelationSynchronization(CorrelationSynchronization[OFDMWaveform]): """Correlation-Based Pilot Detection and Synchronization for OFDM Waveforms.""" yaml_tag = "OFDM-PilotCorrelation"
[docs] class SchmidlCoxSynchronization(OFDMSynchronization): """Schmidl-Cox Algorithm for OFDM Waveform Time Synchronization and Carrier Frequency Offset Equzalization. Applying the synchronization routine requires the respective waveform to have a :class:`.SchmidlCoxPilotSection` pilot symbol section configured. Refer to :footcite:t:`1997:schmidl` for a detailed description. """ yaml_tag = "SchmidlCox" """YAML serialization tag"""
[docs] def synchronize(self, signal: np.ndarray) -> List[int]: symbol_length = self.waveform.oversampling_factor * self.waveform.num_subcarriers # Abort if the supplied signal is shorter than one symbol length if signal.shape[-1] < symbol_length: return [] half_symbol_length = int(0.5 * symbol_length) num_delay_candidates = 2 + signal.shape[-1] - symbol_length delay_powers = np.empty(num_delay_candidates, dtype=float) delay_powers[0] = 0.0 # In order to be able to detect a peak on the first sample for d in range(0, num_delay_candidates - 1): delay_powers[1 + d] = np.sum( abs( np.sum( signal[:, d : d + half_symbol_length].conj() * signal[:, d + half_symbol_length : d + 2 * half_symbol_length], axis=1, ) ) ) num_samples = self.waveform.samples_per_frame min_height = 0.75 * np.max(delay_powers) peaks, _ = find_peaks(delay_powers, distance=int(0.9 * num_samples), height=min_height) frame_indices = peaks - 1 # Correct for the first delay bin being prepended return frame_indices