Source code for hermespy.tools.math

# -*- coding: utf-8 -*-
"""
===========
Math Tools
===========

Implementations of basic maths equations.

"""

from enum import Enum
from typing import Optional

import numpy as np
from scipy import stats
from scipy.constants import speed_of_light
from numba import jit

__author__ = "Andre Noll Barreto"
__copyright__ = "Copyright 2024, Barkhausen Institut gGmbH"
__credits__ = ["Andre Noll Barreto"]
__license__ = "AGPLv3"
__version__ = "1.4.0"
__maintainer__ = "Jan Adler"
__email__ = "jan.adler@barkhauseninstitut.org"
__status__ = "Prototype"


[docs] class DbConversionType(Enum): """Supported db conversion types.""" POWER = 0 AMPLITUDE = 1
[docs] @jit(nopython=True) def db2lin( db_val: float, conversion_type: Optional[DbConversionType] = DbConversionType.POWER ): # pragma: no cover """ Converts from dB to linear Args: db_val (float): value in dB conversion_type (DbConversionType, optional): if POWER then it converts from dB to a power ratio if AMPLITUDE, then it converts from dB to an amplitude ratio default = POWER Returns: (float): the equivalent value in linear scale """ if conversion_type == DbConversionType.POWER: output = 10 ** (db_val / 10) elif conversion_type == DbConversionType.AMPLITUDE: output = 10 ** (db_val / 20) else: raise ValueError("dB conversion type not supported") return output
[docs] @jit(nopython=True) def lin2db( val: float, conversion_type: Optional[DbConversionType] = DbConversionType.POWER ): # pragma: no cover """ Converts from linear to dB Args: val (float): value in linear scale conversion_type (DbConversionType, optional): if POWER then it converts from a power ratio to dB if AMPLITUDE, then it converts from an amplitude ratio to dB default = POWER Returns: (float) the equivalent value in linear scale """ if conversion_type == DbConversionType.POWER: output = 10 * np.log10(val) elif conversion_type == DbConversionType.AMPLITUDE: output = 20 * np.log10(val) else: raise ValueError("dB conversion type not supported") return output
[docs] def marcum_q(a: float, b: np.ndarray, m: Optional[float] = 1): """Calculates the Marcum-Q function Q_m(a, b) This method uses the relationship between Marcum-Q function and the chi-squared distribution. Args: a (float): b (np.array): m (float): Returns: (numpy.ndarray): the approximated Marcum-Q function for the desired parameters """ q = stats.ncx2.sf(b**2, 2 * m, a**2) return q
[docs] @jit(nopython=True) def rms_value(x: np.ndarray) -> float: # pragma: no cover """Returns the root-mean-square value of a given input vector""" return np.linalg.norm(x, 2) / np.sqrt(x.size)
[docs] def amplitude_path_loss(carrier_frequency: float, distance: float) -> float: """Compute the free space propagation loss of a wave in vacuum. Args: carrier_frequency (float): The wave's carrier frequency in Hz. distance (float): The traveled distance in m. Raises: ValueError: If the absolute value of `carrier_frequency` is zero. """ absolute_carrier = abs(carrier_frequency) if absolute_carrier == 0.0: raise ValueError( "Carrier frequency may not be zero for free space propagation path loss modeling" ) # Note that the wavelength factor referes to the effective antenna aperture, so technically it's not part of the propagation loss wavelength = speed_of_light / absolute_carrier amplitude_scale = wavelength / (4 * np.pi * distance) return amplitude_scale